21 November 2014

The Story of Diamond Jack Palmer and the Pelikaan

The story of Diamond Jack Palmer is a typically Australian story of a beach comber whose luck was in when he found diamonds worth a few million on the beach but couldn’t quite keep up with his luck.

It’s also a fascinating aviation story.

It starts with the Koninklijke Nederlandsch-Indische Luchtvaart Maatschappij airline and their Dutch Dakota DC-3 registration PK-AFV, known as Pelikaan.

KNILM logofrom the personal collection of Jorge González

KNILM (the Royal Dutch Indies Airways) was founded in 1928 and headquartered in Amsterdam. They initially offered services from Batavia (now Jakarta) to Bandung and Semarang. The airline rapidly expanded and, in 1930, they offered their first international flight connecting to Singapore. In 1938 they started operations in Sydney, Australia.

When the Japanese invaded the Dutch East Indies (now Indonesia), the airline evacuated all the aircraft it could to Australia.

Ivan Vasilyevich Smirnov was a Russian WWI flying ace who returned to military flying as a captain in the army aviation corps in Indonesia after the attack at Pearl Harbor. He was asked to evacuate the Pelikaan with two crew and nine passengers fleeing Java. They left just in time: the Japanese took the Bandung area three days later.

In the early hours of the morning, shortly before take-off, the Bandung airport manager handed Captain Smirnov a cigar-box shaped packaged wrapped in brown paper. Smirnov was told to hand the package to a representative of the Commonwealth Bank once he reached Australia.

The package contained diamonds which were later said to be valued somewhere between 3 million and 10 million pounds sterling in today’s money (4 million to 17 million US dollars). Ivan Smirnov claimed that he was did not know what was in the package. He and his fleeing passengers departed Bandung normally.

As the aircraft skirted the Kimberley coast of Western Australia, about 80 kilometres from its destination, Smirnov saw smoke over the town of Broome, which was under attack by nine Japanese Zeros. Japanese fighter ace Lt Zenjiro Miyano spotted the Dakota and led three Zeros to attack.

Mitsubishi A6M3 Zero (Commemorative Air Force / American Airpower Heritage Flying Museum)

The Zeros attacked the defenseless Dakota, firing at its port side. The port engine caught fire. Smirnov was badly wounded but managed to put the aircraft into a deep spiral dive.

His only option was to crash land on the beach. The right tyre exploded forcing the aircraft to veer to the right and into the water, which extinguished the fire in the port engine. The Dakota sank into the sand and swung into the surf which was at high tide.

The Zeros dived to strafe the Dakota again and they scrambled out of the plane to find protection on the beach. Four passengers were killed by the Zeros. Smirnov was badly wounded and sent one of the uninjured passengers to the aircraft to recover the cargo. The passenger picked up the post, the log book and the brown paper wrapped package but then he was hit by a wave and dropped the goods. He recovered the log book and the post but could not find the package.

The following day, while the survivors were waiting for a rescue party, a Japanese Kawanishi H6K dropped four bombs but did not cause any further damage.

Five days later, the survivors were rescued. The representative from the Commonwealth Bank came specifically for the package and Captain Smirnov had to tell him it was lost. The story of the diamonds spread like wildfire, although Smirnov said he never knew what was in the package, only that it was valuable.

It didn’t take long for local man Jack Palmer head to the wreckage to salvage what he could. He and “two Aborigines” collected what they could find. Apparently, he found the cigar box and tipped the largest diamonds into “aluminum cups” which he hid and wrapped the rest in a rag. He showed them to Frank Robinson and James Mulgrue, who were waiting nearby on a motorboat. He’s said to have told them, “Take a handful for each of yourself and don’t tell anyone.”

Investigating party standing in front of crashed Netherlands East Indies KLM Dakota DC-3 passenger transport PK-AFV ‘Pelikaan’ at Carnot Bay, Lieutenant Laurie O’Neil (second from left), ‘Diamond’ Jack Palmer (third from left) and Warrant Officer Gus Clinch (fourth from left), Western Australia, March 1942

What’s definitely known is that the three of them were at the aircraft wreck and that afterwards, Palmer was seen around town spending money and bragging that he no longer had to work, only to sit and smoke cigars. He later handed over two salt-cellars of diamonds to the authorities.

From the Advocate, an Australian newspaper, in a short piece published 4th May 1942:

BROOME, Sunday.-The discovery by a beach comber of £300,000 worth of diamonds on a remote north-western beach has been revealed.
Addressed to the Commonwealth Bank, the diamonds were handed in a parcel to Captain Smernof, Dutch pilot of one of the last planes to leave Java after its capture by the Japanese.

The plane was shot down by Japanese raiders returning from their first raid on Broome early in March, and crashed into four feet of water in Carnot Bay, 60 miles north of Broome. Of the complement of 12, four died of injuries and were buried in the sand hills near the lonely beach. The others were discovered by natives and rescued, but when a search of the plane was made the diamonds could not be found. Later officials made another search, but without success, and the Dutch authorities then despatched a special officer to investigate.

Two days later, Jack Palmer, middle-aged and ill clad, arrived on his way to enlist. He said he had given up his occupation of beach comber, and had abandoned his lugger. Then, producing a pair of large salt and pepper shakers, he poured out on an official’s desk a glittering stream of diamonds. He had found them in a sodden parcel partly embedded in tidal mud near the beach of Carnot Bay. The diamonds are now safe in the Perth Commonwealth Bank.

Palmer was immediately taken into custody for interrogation. He claimed that was all he had and that the package had broken apart with most of the diamonds falling into the sea.

More diamonds showed up in the area, presumably stashed or spent by Palmer, but the total amount recovered was just over 10% of the original shipment.

“Diamond Jack Palmer” and the two men who met him on the motorboat were tried for the theft of the diamonds in 1943. The two accomplices were acquitted as it was determined that no theft had been committed by them. Palmer had handed over two salt-cellars of diamonds to the authorities and although the majority of the diamonds were still missing, the investigation was unable to prove that he had stolen the rest.

The remains of the Dakota remained on the beach until 1970, when the stripped fuselage was broken up by dynamite. The leading edge of one of the wings is apparently all that remains now.

In an interesting addendum, in 1989 a veteran named Norman Keys wrote about his recollections of the crash near Broome.

About the Broome 1942 exhibition

Excerpt from a letter written by Norman Keys dated 29 September 1989. Australian War Memorial PR90/030

After a few days on the beach when the woman and her child and some of the crew were buried, one of the survivors when searching for water was found by one of the local natives who took the rest of the survivors to a dutch [sic] mission station about fifty miles from the beach the plane had landed on. The message got through to Broome 300 miles south and that’s where I entered the story with a trip in a utility to pick them up.

When I arrived at the Beagle Bay Mission the four survivors were in a pretty bad way and the Captain Smirnoff appeared to me to be delirious and kept repeating that he had to get back to the aircraft to pick up the diamonds. For a brief period we considered going back to the aircraft with some native guides but it was decided that we had to get the survivors to hospital in Broome as soon as possible and so began the worst 300 miles trip of my life with my passengers cursing every bump. I never really believed the existence of the diamonds until some time later it was reported in the paper that a beachcomber had come across the plane and found some diamonds and was handing them out to the natives as favours and later in Broome was freely displaying them. It turned out that there was a fortune in Dutch diamonds being evacuated from Java to the bank in Melbourne. There were court cases following the discovery of the diamonds but the bulk of the shipment has never been discovered and the belief is that they are still buried somewhere in N.W. Australia.

The interesting thing is that this is the first reference that Captain Smirnov may have known about his cargo of diamonds. After the crash, he had consistently stated that he never knew what was in the package, only that he needed to deliver it. Based on Norman Keys’ account, he may have known exactly what he was carrying but unable to do anything about it.

The remaining diamonds were never recovered.

12 November 2014

Crash on Go-Around: Russian Video

This video is harrowing to watch but it’s the most classic example of a stall in the circuit I think I’ve ever seen. The dash cam on this microlight is recording a go-around and crash at a small airfield near Moscow. It was featured in Life News at which point the video began to go viral. The original article is here: Авиакатастрофа под Владимиром попала на запись видеорегистратора – Первый по срочным новостям.

The aircraft was an Evektor Harmony, a light sports aircraft which weighs just 311 kilos empty (686 pounds). The aircraft’s stall speed at VS1 is 45 knots and at VS0 with full flaps it is 40 knots. It’s unclear in the video what the configuration of the aircraft is.

In the left seat is a student pilot and in the right seat is his instructor, who died in the crash. The Life News article refers to the instructor as the pilot but I suspect this is based on being in charge rather than a reference to who was Pilot Flying. It certainly does not look like there was ever a clear decision as to who was in control of the aircraft. There is no official information on the accident yet.

The video begins with what looks like a standard touch and go with some crosswind. The student pilot on the left has the stick, the instructor has the power. It seems to me like the student is looking at the instructor for reassurance and the instructor pulls back on the power, possibly because he couldn’t see how close to the trees they were? The student pulls back instinctively, pulling them right into a stall. Then there’s that awful slip to the left and its all over.

If you were shouting RIGHT RUDDER at the screen while watching this video, you are not alone, as you can see from the commentary on /r/flying on Reddit:

Apparently, photographs from the wreckage show that the flaps were down which might explain why they were climbing away so slowly.

It’s hard to understand what exactly happened or how they managed to do so much wrong on what should have been a simple missed approach.

An investigation is in progress.

07 November 2014

Captain Fired After Nose-Wheel Landing

The Captain of a Boeing 737-700 landed hard at LaGuardia Airport, collapsing the nose gear. But it’s actually what happened leading up to the hard landing that makes this particular case interesting. The final report has not been released; however various public documents, including the Chariman’s factual reports, are now available on the NTSB site:

Accident ID DCA13FA131 Mode Aviation occurred on July 22, 2013 in Flushing, NY United States Last Modified on October 28, 2014 09:10 Public Released on October 28, 2014 08:10 Total 30 document items

Southwest Airlines flight 345 on 22 July 2013 was a scheduled passenger service from Nashville International Airport in Tennessee to LaGuardia Airport in New York carrying 145 passengers and 5 crew. The Captain started her sequence of trips on the 21st of July and the First Officer began his on the 19th. They met up on the morning of the 22nd at Los Angeles International. They had not previously flown together. They flew into Nashville International Airport, arriving at noon, and changed aircraft to the Boeing 737-700. The Captain invited the First Officer to do the next leg as the Pilot Flying and the Captain would take the role of Pilot Monitoring. An American Airlines pilot was in the jumpseat of the cockpit for the trip to New York.

The American Airlines pilot in the jump seat described it as a normal flight.

Once the flight was airborne, both accident crewmembers were very personable. They talked shop and he did not see any issues personality-wise. The captain occasionally gave the accident F/O guidance and he would say ok. The jumpseat occupant did not see any issues in that regard. He thought the accident F/O might be new, based on how the captain was guiding him. The accident F/O made small procedural errors like one time forgetting to push the LNAV right away. During the descent, the captain was giving the accident F/O small instruction tips.

The initial flight was uneventful until they drew close to LaGuardia Airport. There was significant weather in the area and some thunderstorm activity. While they were holding because of the weather, the First Officer briefed a visual approach to Runway 4 backed up with the ILS to Runway 4. They computed the landing distances for the wet runway and the Onboard Performance Computer bracketed out Autobrakes 2, which means that the 2 setting for autobrakes would be not enough for the circumstances. They chose setting 3 for the Autobrakes. During the briefing, the Captain asked if the First Officer wanted Flaps 40. The First Officer agreed, “Yeah, since it’s wet and stuff. Yup.”

The Captain also mentioned that tailwinds on arrival were reaching as high as 30 knots. It’s clear at this point that she was concerned about their landing distance at LaGuardia.

The first officer said that about 98% of the time, he had landed with a 30º flap setting, but he estimated that he had landed with 40º flaps about 30-50 times during the previous year-and-a-half. He stated that a pilot had to be “on his game” with a 40º flap landing, since the airplane had more drag, it required a higher power setting, and a pilot needed to keep a better check of airspeed, because it was quick to decrease. He characterized a 40º flap landing as a power on landing without the pilot reducing power until the airplane was established in the flare with the main gear about 3-4 feet above the runway.

Of note is his description of a 40º flap landing as a power on landing: that is, one flies the aircraft to the ground as opposed to gliding it. The power is only reduced at the very last moment.

The American Airlines pilot in the jump seat barely recalled the conversation.

He remembered a discussion earlier in the flight between the crewmembers that the captain had only been to LGA once before and the F/O had been there a few times. There was a little discussion about going into LGA, but he did not recall much. He thought there was a concern about the length of the runway and the water. He did not remember a discussion about not being fast or high on the approach. He was not paying that close attention.

They were still almost an hour away from landing. There were thunderstorms and clouds between them at the airport; however LaGuardia airport itself appeared to be clear and the aircraft landing before them reported no turbulence on approach.

They broke out of the cloud at about 2,000 feet as they were passed to Tower. The flight crew completed the before landing checklist. The Tower Controller at LaGuardia cleared the aircraft to land.

Up until then, both crew members characterised their cockpit interactions and CRM as good. But as they descended towards the airport, it started to break down.

Interviews with SWA management and training personnel, indicate that the correct protocol would be that when the autopilot was engaged, the PF would be responsible for manipulating the FMC or commanding the PM to do so. The PF would also command a flap setting, which the PM would accomplish. It would not be normal procedure for the PM to manipulate the FMC, flaps, or gear without being asked or commanded.

The First Officer’s recollection was that during the original briefing, the Captain made the decision to use Flaps 40 as she was concerned about the landing distance with the runway being wet. He agreed.

He described her as wanting to be in control. On the approach, he noticed that as he was slowing from 250 knots to approach speed, she started spinning the Mode Control Panel dials without him asking her to set his speeds. As he was about to call for a speed, he found she was ahead of him and already dialling it in.

Under normal circumstances, the Pilot Flying would either set the speeds himself or request that the Pilot Monitoring did it. The First Officer said that it happened that a Captain would say “Hey, I’m going to do this for you” and he would say OK. However, he did not recall the Captain asking or saying anything until after she’d made the changes.

The Captain remembers looking out the window and thinking that the pitch angle did not look good. She realised that they did not have flaps 40 set as per the briefing, which means their performance calculations were wrong. The First Officer, as Pilot Flying, had forgotten and only called for the flaps to be taken as far as 30º.

As Pilot Monitoring, it is her responsibility to notify the pilot flying of anything she notices. However, she should not make changes to the configuration of the aircraft: it is the Pilot Flying’s job to request or make changes.

When they hit the final approach fix, the aircraft was configured for landing with the gear down, flaps 30 and speed brakes armed. The next important phase of the approach was the aircraft reaching 1,000 feet above ground level. The aircraft was on autopilot with the First Officer keeping his hands lightly on the controls ready to take over.

The 1,000 foot call-out is important because the aircraft must be fully configured for landing at this point. If the aircraft is not yet completely configured, the correct response is to break off the approach and go around.

In her interview, the Captain said that she informed the First Officer that the flaps were set to 30 and she was going to set them to 40 and that the First Officer confirmed this. The First Officer’s recollection was that she simply changed the setting and told him afterwards. He was not sure if this happened before or after the 1,000 foot call out although he did know that no further configuration changes should happen after that time.

The cockpit voice recorder has the exchange.

17:43:03 First Officer A thousand feet. Thirty six and sinking six hundred.
17:43:06 Captain Thousand feet.
17:43:11 Cockpit Area Microphone [sound similar to trim]
17:43:30 Captain Oh, we’re forty
17:43:31 First Officer Oh there you go
17:43:32 Cockpit Area Microphone [sound similar to flap handle movement]
17:43:34 Captain That was like an hour and a half ago that we briefed that. I’m sorry
17:43:36 First Officer [sounds of laughter]
17:43:37 Captain All the sudden I started looking at that runway going ‘something’s wrong.’
17:43:39 First Officer Okay.
17:43:40 Captain Okay flaps are at forty.
17:43:41 First Officer Forty, we got it. Green light.
17:43:42 Captain Green light.

The captain said that when she realized that the flaps were not set to 40º, she was pretty certain that they were on the glideslope. She did not recall at what altitude the flaps were set to 40º but it was a “good time” prior to the 500 foot call out. She said she did not remember if they were below 1,000 feet when the flaps were set to 40º, but the flaps should have been down by then. Later in the interview, she stated that “the call for flaps 40 was made with plenty of time before the 500 foot callout. By the book, it would have been a go around.”

The Captain watched the landing through the HUD, which means she was watching the aircraft on the glideslope of the ILS. The Pilot Flying was flying a visual approach and his reference for this was the PAPI.

The Precision Approach Path Indicator (PAPI) is a visual display which provides vertical guidance for the approach path. In a normal approach, the PAPI would show two whites and two reds. More whites means that the angle of the approach is too high. More reds than white means that the angle of the approach is too low.

At around 500 feet, the First Officer disconnected the autopilot and autothrottles. The PAPI indicated two whites and two reds and he was satisfied with his airspeed and crosswind corrections. As far as he was concerned, everything was fine.

The Captain was watching through the Heads Up Display which gave her additional information, including wind.

The first officer said that out of the corner of his eye he noticed that the captain appeared to be somewhat uncomfortable with the approach. As they crossed over the runway overrun, he noticed that the PAPI indicated 3 white lights and one red, which meant that they were a little high on the glidepath. He knew that he would need to make a slight correction to land in the touchdown zone. He said that he then felt the captain’s handon top of his on the throttles, and she pulled his hand and the throttles back retarding the throttles to what felt like the idle position.

He said that he did not recall her making any comments, before, or during her retarding the throttles. The first officer said that he had never had a captain put his/her hand over his on the throttles during an approach, although some captains would guard the throttles by placing their hand below his behind the throttle levers. He said he never had a captain pull the throttles back on him while he was flying an approach.

As the First Officer continued his final approach, the PAPI shifted from two reds and two whites to three whites and a red, thus signalling that the aircraft was slightly high. The Captain, watching from the Heads Up Display, said that she believed that the aircraft was going too fast and that the pitch was too low.

She said it felt as though they were being pushed over the ground. She said that over the threshold, she verbalized that they had to get the airplane down, and she put her hand over the first officer’s hand on the throttle, but was not touching his hand. She said there was no standard procedure for that, but was certain that it was explained as a technique. She said she had verbalized that they had to get the airplane down on the ground, but she did not get the reaction she needed from the first officer, and did not believe she had time to try to articulate it again. She said she believed that if she did not act, the airplane would have continued to float past the touchdown zone.

Another relevant point is that the Captain had been watching the approach on the Heads Up Display. The Jeppesen approach plate (11-1) for ILS Runway 4, states that the VGSI [PAPI] and ILS glidepath are not coincident. This means that even coming down perfectly on the PAPI, the aircraft could show as high on the ILS glideslope. The NTSB have so far makes no comment as to whether this may have led the Captain to overreact as the approach appeared higher than it was.

Regardless, it is quite clear from the data that at the runway threshold, both the glideslope deviation and the PAPI visual guidance indicated that the aircraft was high.

From the transcript of the Cockpit Voice Recorder

17:44:00 Captain Clear to land.
17:44:07 Captain Correcting nicely. Don’t get too much on the speed.
17:44:12 Captain Ooh.
17:44:12 First Officer Come on.
17:44:14 Captain One hundred. Gotta get [unintelligible]
17:44:17 Captain Get down. Get down. Get down. Get down.
17:44:23 Captain I got it.
17:44:23 First Officer Okay you got it.
17:44:26 Captain [sound similar to inhalation]
17:44:26 Captain [expletive]
17:44:26 Cockpit Area Microphone [sound of impact]

The two things that jump out at me here are that her phrasing is not clear and non-standard (most significantly, “I got it” rather than “I have control” when she is taking control of the aircraft. The second is that if the approach was not stabilised: she should have called for the first officer to go around, rather than try to correct the issue and take control at low level.

The American Airlines pilot in the jump seat was unable to say much about the final moments.

The airplane was low; he was thinking they were low and the nose still looked low. He was not
familiar with the airplane and was seated in the jumpseat, but it did not look right. He thought the altitude was in the 150-200 foot range. There was a 2-4 second delay after the throttles went to idle and then the captain said my aircraft and the accident F/O lifted his hands up in the air. He did not notice what the F/O did when the captain pulled the throttles to idle.

The jumpseat occupant was concerned about the pitch being low so he was looking outside the airplane. After the transfer of control, he seemed to recall a pitch down at that point. The airplane pitched over further down. He became tunnel visioned on the cement and he did not look back inside. The ground was coming up quicker than he thought it should have.

The First Officer said that he acknowledged and released control of the aircraft and then scanned the altimeter and airspeed. He looked out at the rapidly approaching runway and said that all he could think to do was brace for impact. There was no time to say anything.

The Captain may have let the nose wheel drop drying to catch the ILS glideslope and by the time she realised, it was too late for a correction.

The captain said that she saw the nose hit the runway, and felt the impact of the nose hitting, but did not feel the nose wheel hit, and had no recollection of which gear hit first. She said it was a hard impact, and the airplane started sliding. She said she tried to control the airplane with rudder and brakes. The airplane veered slightly to the right before stopping on the runway.

Asked his impression of what section of the airplane touched down first, [the American Airlines pilot in the jumpseat] said the nose wheel first. He did not remember how far down the runway they touched down. He did not recall any markings on the runway before they touched down. He was looking “at concrete” but he was looked at the centerline. When they did the pitch over when the nose hit, it felt like “one big jarring moment” and then the nose was on the ground. He did not feel an arresting sensation like the nose wheel touched first and then collapsed. The nose was on the ground and they were sliding and he thought a panel or 2 became dislodged in the cockpit. After a few seconds, smoke entered the cockpit from underneath the floor boards and around the pedestal.

Boeing have submitted their report based on the Flight Data Recorder:

The FDR data show the airplane configured for a flaps 40 approach with the autopilot and autothrottle engaged, and on glideslope and localizer at 500 feet Radio Altitude (RA). The autopilot and autothrottle were disengaged at approximately 410 feet RA. As the approach continued, the airplane began deviating above the glide path due to increased thrust and a slight increase in pitch attitude while maintaining the selected speed of VREF40+6. At the runway threshold, the airplane was at 60 feet RA and on a 2.1-degree glide path. The throttles were reduced to forward idle at 46 feet RA, and at 32 feet RA the cockpit voice recorder indicated that a transfer of control was made from the First Officer to the Captain. After the transfer, but prior to touchdown, the control column relaxed to neutral deflection, the throttles were advanced.

Due to the early reduction in thrust to forward idle, the absence of control column input prior to touchdown, and the nose-down pitch tendency in ground effects, the airplane pitch attitude decreased to a nose-down attitude of -3.1 degrees and touched down on the nose gear prior to the main gear touching down.

In other words, the Captain pulled the power back because she believed that they were too high. The nose pitched down and as the aircraft touched down on the runway, it landed nose-gear first.

The investigation is still in progress; however the Captain has been already terminated by the airline.

31 October 2014

Fascinating Aviation News

Anna is back from holiday and boy does it show. I’m hard-pressed to compete with the excellent articles that she’s highlighted on the Fear of Landing Facebook page this past week.

I know not all of you use Facebook so I thought I’d share the best posts with you.

My favourite was the news piece about the RAF jet who diverted a Lithuanian cargo plane after it stopped responding to ATC.

RAF Typhoon to cargo plane: “I’m instructed by Her Majesty’s Government of the United Kingdom to warn you if you do not respond immediately to my orders, you will be shot down.”

RAF jets escort Latvian cargo plane causing loud blast in Kent area – Home News – UK – The Independent

To react quickly to the incident, the Typhoons were launched from RAF Coningsby in Lincolnshire and travelled at supersonic speed.

The resulting blast was heard in the Dartford area at around 4.40pm, and resonated in the north-west Kent areas of Sevenoaks, Kemsing, Dartford, Faversham, Maidstone and Tunbridge Wells.

Frightened local residents quickly took to Twitter to speculate whether Kent had been hit by an earthquake or an explosion.

The audio has been posted to Soundcloud by RAF Coningsby Info:

Here’s a few more of Anna’s posts:

And today’s post, especially for Halloween:

If you enjoy Anna’s posts, come on over to Facebook and join us on the page or simply leave a comment here to ask her to post more.

24 October 2014

Dwarves, Orcs and Elves Take Flight with Air New Zealand

Air New Zealand, the official airline of Middle-Earth, have once again taken the world by storm with their safety video. They’ve called it The Most Epic Airline Safety Video Ever and it’s guaranteed to keep passengers’ attention during pre-flight announcements.

Keep your eyes peeled for Frodo, Fili, and Radagast and even director Peter Jackson! Ian McKellen was not available to play Gandalf so instead, film-maker and safety video director Taika Waititi filled in. Apparently his passenger is a well-known baseball player, Naoyuki Shimizu.

As the official airline of Middle-earth, Air New Zealand has gone all out to celebrate the third and final film in The Hobbit Trilogy – The Hobbit: The Battle of the Five Armies. Starring Elijah Wood and Sir Peter Jackson; we’re thrilled to unveil The Most Epic Safety Video Ever Made.

The video was filmed in the Middle-Earth locations of New Zealand over the course of a week. Their first Hobbit safety video had more than twelve million views and the current video The Most Epic Safety Video Ever Made #airnzhobbit has already had over three million views as I write this.

I usually recommend against reading comments on You Tube but this piss-take of searching for symbolism really did make me laugh:

The safety position in case of emergency is designed to break your neck so flight companies wont have to pay you for cure of possible injury for long time, they only will have to pay few bucks to your relatives if you die.

I have proof: the video length was 4:38 which gets rounded to 5, this video was about Lord of the Rings and Lord of the Rings has the Sauron eye, humans have 2 eyes.
5 -2=3 : Triangle has 3 corners
Triangle looks like nose. Humans have one nose which looks like triangle and 2 eyes,
2-1 makes 1 eye
The Illuminati’s symbol is triangle with eye in middle of it! They spoke about illuminated signs, I found them.
AIR NEW ZEALAND ILLUMINATI CONFIRMED?

Maybe not.

Sadly, they’ve said that this is the last of their Hobbit-themed works. The YouTube video will at least help to tide me over until the final Hobbit film comes out in December… although if anyone wants to fund a flight to New Zealand, I’m happy to check the safety video out in person!

17 October 2014

Piper Comanche Full of Arrows

This photograph was sent to me a couple of times with questions of what it might portray and I just had to track it down.

The photograph was first posted to Reddit as This aircraft belongs to a conservation team in The Amazon. Yikes! and then again in September with it’s current headline, The anthropologists decided that this tribe was to remain “uncontacted”. It was the second description that took off, even though in both instances the descriptions was pretty quickly debunked.

The Piper Comanche in the photo is actually part of an art exhibition in Buenos Aires.

Argentina’s new arts district is built “from scratch” – The Art Newspaper

The Cuban artist collective Los Carpinteros is showing three large-scale installations at Buenos Aires’s Faena Arts Centre in May. They have created a new site-specific sculpture especially for the arts centre’s 700 sq ft “Sala Molinos” exhibition space and are also installing two earlier works—a Piper Comanche single-prop plane pierced by arrows and a sprawling shantytown neighbourhood built entirely from corrugated cardboard.

The piece is called Avião. Los Carpinteros say that they produced it as a symbol of modernization: the modern transport contrasting with the wood-and-feather arrows.

It seems likely that the idea came from the Sentinelese, a pre-Neolithic tribe living on the Andaman Islands who are notably hostile to outsiders. In 2006, Sentinelese archers killed two fishermen who strayed into their territory.

Stone Age tribe kills fishermen who strayed on to island – Telegraph

The two men killed, Sunder Raj, 48, and Pandit Tiwari, 52, were fishing illegally for mud crabs off North Sentinel Island, a speck of land in the Andaman and Nicobar Islands archipelago.

Fellow fishermen said they dropped anchor for the night on Jan 25 but fell into a deep sleep, probably helped by large amounts of alcohol.

During the night their anchor, a rock tied to a rope, failed to hold their open-topped boat against the currents and they drifted towards the island.

“As day broke, fellow fishermen say they tried to shout at the men and warn them they were in danger,” said Samir Acharya, the head of the Society for Andaman and Nicobar Ecology, an environmental organisation.

“However they did not respond – they were probably drunk – and the boat drifted into the shallows where they were attacked and killed.”

After the fishermen’s families raised the alarm, the Indian coastguard tried to recover the bodies using a helicopter but was met by the customary hail of arrows.

Avião may also have been inspired by another similar piece which has a very different message.

Borrowing Your Enemy’s Arrows is by Cai Guo-Qiang and on display at the Museum of Modern Art in New York City.

MoMA | The Collection | Cai Guo-Qiang. Borrowing Your Enemy’s Arrows. 1998

The title—which alludes to a text from the third century (known as Sanguozhi)—refers to an episode in which the general Zhuge Liang, facing an imminent attack from the enemy, manages to replenish a depleted store of arrows. According to legend, Zhuge Liang tricked the enemy by sailing across the Yangtze river through the thick mist of early dawn with a surrogate army made of straw, while his soldiers remained behind yelling and beating on drums. Mistaking the pandemonium for a surprise attack, the enemy showered the decoys with volleys of arrows. Thus the general returned triumphantly with a freshly captured store of weapons.

So that’s the story behind the aircraft full of arrows. The only real question is whether the aircraft is still in flyable condition; certainly if they’d used a Piper Arrow instead of the Comanche, one could say it was perfectly arrowdynamic.

I’ll get my coat…

10 October 2014

Bit of a Fender Bender at Dublin Airport

You may remember my post about a previous incident at Dublin Airport, also involving Ryanair: Fear of Landing – “Where’s that Guy Going?” Runway Incursion at Dublin

That was the case where a Monarch crew took a wrong turn and blundered onto the active runway — right into the path of a Ryanair 737 on its take-off run. The Ryanair Captain initiated a high speed rejected take-off at 124 knots. By the time the Air Traffic Controller realised what was happening and shouted at the Ryanair to stop, the First Officer responded, we’re stopped. The Ryanair flight returned to the stand to have its brakes inspected. Meanwhile, the Monarch flight continued on its way, taking off three minutes later. That’s probably the first time ever I’ve felt sorry for a Ryanair flight for being late.

Anyway, Dublin airport has hit the news again, this time for two Ryanair aircraft damaged during taxi.

The Daily Mail ran the story with a typically staid headline:

Passengers watch in horror as two Ryanair planes collide on Dublin Airport runway

The Evening Standard followed suit:

Passengers watched in terror as two Ryanair planes crashed into each other on the runway at Dublin airport.

Quick point: neither aircraft was actually on a runway. The first aircraft was holding short of the runway and the second aircraft was behind it.

Ryanair, on the other hand, referred to the ground incident as a “scrape”. A notice was posted onto their website that afternoon with the following statement:

Two of our aircraft were taxiing slowly to the runway at Dublin Airport this morning. The winglet of one aircraft appears to have scraped the tail of the other. Both aircraft were under the instruction of Dublin Airport Air Traffic Control at the time.

There was no impact on customers on board and Ryanair contacted the IAA and worked with them to return both aircraft to stand. Affected customers disembarked, were provided with refreshment vouchers and boarded two replacement aircraft, which departed to Brussels Charleroi and Edinburgh later this morning.

The notice has since been deleted from the site.

The winglet or sharklet extends above and more recently also below the wing at the wingtip. They increase the performance for jets by reducing drag, which can mean a higher cruise speed or more commonly, better fuel efficiency.

How Things Work: Winglets | Flight Today | Air & Space Magazine

Winglets reduce wingtip vortices, the twin tornados formed by the difference between the pressure on the upper surface of an airplane’s wing and that on the lower surface. High pressure on the lower surface creates a natural airflow that makes its way to the wingtip and curls upward around it. When flow around the wingtips streams out behind the airplane, a vortex is formed. These twisters represent an energy loss and are strong enough to flip airplanes that blunder into them.

But obviously the winglet isn’t going to survive impact with another aircraft’s tail. This photo taken by Niall Carson makes it look a bit more than a scrape, I have to admit.

Irish newspaper accounts of the passengers show that they were somewhat bemused but not actually watching in horror or terror.

Dramatic picture shows wing tip embedded in plane after two Ryanair jets collide – Independent.ie

Andrea Cunningham, from Drogheda, was due to fly to Edinburgh for a job interview this morning and was a passenger on one of the Ryanair aircraft.

Speaking on RTE’s Morning Ireland programme, Ms Cunningham said the impact was minimal, but the plane shook.

“We just kind of turned a corner and hit into another plane.

“It wasn’t a huge impact to be honest but you could see the plane shook and then it kind of just stopped.

“We were on the plane for about an hour, maybe short of an hour.

“We were just waiting to go back into the airport terminal,” she said.

It seems that visibility was poor and one aircraft was passing behind without quite enough space there. The ATC recordings make it clear that the flight crews involved were really not sure what happened in the moment. Note: if you are reading this from the mailing list, you may need to click through to get the audio file.

This photo, which I was unable to find an attribution for, gives good context for how it happened.

According to a poster on the Professional Pilots Rumour Network, this was an accident waiting to happen.

Dublin: 2 x RYR in contact during taxi. Both damaged.

I retired some years ago from 50 years of professional (accident free) flying and I was very familiar with Dublin Airport.

I am quite sure that dozens of us were aware that the south east corner of that airfield, after they built runway 28, was an accident waiting to happen. To say that this little corner, even on a CAVOK day, is busy, is an understatement.

In fact, I have just downloaded an IAA Aerodrome Chart (EIDW AD 2.24-1) which has, at the top left hand corner, an insert diagram entitled (in red) “Runway Incursion Hot Spots”. This shows the problem beautifully.

In the morning nowadays, departures are made from runway 28 and 34 simultaneously so that part of the airfield can get quite congested. If you want my opinion (and you probably don’t) my guess is that the aircraft holding short of 28 was being super-safe and holding back a bit further than normal. The aircraft heading for 34 tried to taxi past but mis-judged his wing tip clearance by about 10 feet.

Now, as an ex-DC-10 captain, I need to tell the great unwashed on this thread that it is quite impossible from the flight deck to judge where your wing tip is within 30 feet or so (see BA 744 at JNB).

My car beeps loudly when I’m backing up into something else, maybe the wing tips need similar sensors? It would at least make for some amusement.

03 October 2014

Five Airbus A350-XWB in Formation

This week had a once-in-a-lifetime opportunity for plane spotters: Five Airbus A350-900 test aircraft flying in formation. The Airbus A350-900 received its type certification from the European Aviation Safety Agency (EASA). The FAA certification will follow.

The A350-900 Type Certification comes after successfully finishing a stringent programme of certification trials which has taken its airframe and systems well beyond their design limits to ensure all airworthiness criteria are fully met.

The A350 XWB (Xtra Wide-Body) is the first Airbus to have a fuselage and wings made primarily of carbon-fiber-reinforced polymer. The A350-900 series seats 314 passengers nine abreast and has a range of 14,350 kilometres, almost the distance from New York to Brisbane.

Airbus say that the A350-XWB is 16% lighter manufacturer’s empty weight (MEW) per seat and uses 25% less fuel. The A350 is expected to enter service by the end of the year.

The prototype A350 first flew on 14 June 2013 at Tolouse-Blagnac Airport in France. Now, just over a year later, the A350 hyas its type certification.

The test aircraft collected over 2,600 flight test hours over 600 flights. As a celebration of the type certification the five A350s performed a formation flight at the end of their programme.

It is usually much too expensive for commercial aircraft to be used for formation flying so this is quite a sight to behold.

The video was filmed using a sixth aircraft, a Corvette, which chased the five A350-XWBs.

26 September 2014

Hypoxia on Kalitta 66

This video is making the rounds again and it chills me as much to listen to it now as it did the first time I heard it.

The video features actual audio from Air Traffic Control dealing with a hypoxic pilot. Here are the details of what happened.

Kalitta flight KFS-66 was a cargo flight flying from Manassas, Virginia to Ypsilanti Airport, Minnesota.

Kalitta Air is a cargo airline headquartered in Ypsilanti. Conrad Kalitta started carrying car parts in his twin-engine Cessna 310 in 1967. His business, originally called American International Airways. Kalitta retired in 1997 but in 2000, the company ceased operations and Kalitta came out of retirement to rescue it. He called the new airline Kalitta Air. In 2007 Kalitta received the FAA’s Diamond Award – the highest honor for maintenance training. Kalitta Air is still owned by Conrad Kalitta.

Kalitta flight KFS-66 departed Manassas normally and was en-route flying at FL320: 32,000 feet over the sea. The flight crew had just been handed off to Cleveland’s Air Route Traffic Control Center when air traffic controller Jay McCombs noticed that the aircraft had a “stuck mike” – that is, the Push-to-talk microphone was being pressed , keeping the transmission open.

What was actually happening was that the First Officer was already unconscious and his arm was flailing violently and uncontrollably, disengaging the autopilot and forcing the Captain was trying to hand-fly the aircraft. The air traffic controller can’t understand the Captain and a second pilot in a different plane helps to get the message across.

This transcript is from the National Air Traffic Controllers Association.

Controller Jay McCombs: Kalitta sixty six how do you hear?
Captain: Kalitta six six … (unintelligible)
McCombs: Kalitta sixty six roger. You’re keying your mike and it’s staying on there frequently so please be careful.
Captain: Kalitta six six, declaring emergency.
Second Pilot (in another aircraft): Sir, he’s declaring an emergency with his flight controls.
Captain: Affirmative!
Second Pilot: Yes, sir, he said affirmative on that.
McCombs: All right Kalitta sixty six, roger. What are your intentions?
Captain: Request vectors Ypsilanti.
Second Pilot: Sir, he’s looking for vectors.
McCombs: Alright, Kalitta sixty six, I understand an emergency, you want a vector to
Cincinnati. Is that correct?
Captain: Negative. Vectors Ypsilanti.
Second Pilot: Ypsilanti.
McCombs: Ah, Kalitta sixty six are you able to maintain altitude. What assistance can I give you other than that vector?
Captain: Unable to control altitude. Unable to control airspeed. Unable to control heading. Kalitta six six. Other than that, everything A-OK.
McCombs: OK, Kalitta sixty six understand you’re not able to control the aircraft. Is that correct?
Captain: That is correct.
McCombs: Kalitta sixty six are you able to land at an airport that is closer to your position? Pittsburgh approximately five zero miles southwest of your position, Cleveland about eight zero miles northwest of your position.
Captain: Prefer to land aircraft at destination airport as the aircraft is (unintelligible). No possible damage to any part of the aircraft (unintelligible). So we’re slowly, ever so slowly, regaining control the airspeed and the aircraft if we are given the time to slowly reengage.

Meanwhile, follow controller Stephanie Bevins tunes into the frequency so she can hear the pilot. She concludes that he must be suffering from hypoxia. Hypoxia is where effectively your body is starved of oxygen. The onset of hypoxia is often masked by the euphoria – you have a general sense of well-being and can be apathetic to the fact that something has gone wrong. You will feel confused and disoriented. Your time of useful consciousness is limited – the time in which you remain capable of making sensible decisions and correcting the issue.

Bevins knows that they need to get the aircraft down from FL32 to a level where the oxygen is sufficient for the pilots, and quickly before the Captain loses consciousness. At this stage, the Captain appears to only be able to respond to direct commands. McCombs tells Kalitta to descend.

McCombs: Kalitta sixty six if able descend and maintain flight level two six zero.
Captain: Descending now to flight level two six zero, Kalitta six six.
McCombs: Ah, Kalitta sixty six, are you still requesting a vector for Ypsilanti?
Captain: Affirmative. We sure are. Got the aircraft back under control.

The Captain couldn’t turn on the autopilot as his First Officer kept switching it off, which probably saved his life. His focus on hand-flying the aircraft kept him conscious through-out; otherwise they almost certainly would have continued on autopilot at 32,000 feet until the aircraft ran out of fuel and fell out of the sky.

As Kalitta 66 descends, the Captain’s voice changes. Slowly, his words become more understandable and his reactions more professional. By 11,000 feet, he and his First Officer have recovered.

McCombs (to someone else inside Cleveland Center) Kalitta sixty six can I vector him to the right? Try and hold on, we think he has hypoxia.
Unidentified voice: All right, to the right is approved.
McCombs: All right thank you.
McCombs: Kalitta sixty six if able fly heading of three three zero.
Captain: Three three zero.
McCombs: Kalitta sixty six, area of precipitation 11 o’clock and one five miles extends approximately three zero miles along the route of flight.
Captain: OK, we see that. Looks like it’s (unintelligible).
First Officer: And roger, at eleven thousand Kalitta sixty six.
McCombs: Kalitta sixty six roger say intentions.
First Officer: And Kalitta sixty six. Destination Ypsilanti.
McCombs: Kalitta sixty six roger. Cleared to Ypsilanti via direct. Maintain one one
thousand.
Captain: OK … proceed direct Ypsilanti, Kalitta six six.
First Officer: And Kalitta sixty six, the aircraft is stable at this time.
McCombs: Kalitta sixty six roger. Again, maintain one one thousand. You are cleared direct Ypsilanti. Contact Cleveland Center one two zero, point seven seven.
First Officer: Twenty seven seven direct. Yip, Kalitta sixty six.

Stephanie Bevins and Marvin McCombs were awarded the Archie for the Great Lakes region, the National Air Traffic Controllers Association annual safety award.

Great Lakes Region Award Winner

Without Bevins and McCombs, there is no telling what would have happened. Bevins’ diagnosis made all the difference to the fate of the passengers, and without McCombs, the necessary actions to solve the problem would not have been taken to get the aircraft down safely. Various individuals were involved in the assistance of KFS66, clearly stated by McCombs who says that “the entire area (Area 5) worked extremely well as a team.”

I agree with NATCA that this is an amazing story which really shows off air traffic controllers at their best. It’s also well worth a listen for all pilots to remind them just how insidious and deadly hypoxia can be.

19 September 2014

Pilot Suicides: Fact vs Fiction

There’s been a lot of news reports about Ewan Wilson’s “breakthrough” that the disappearance of Malaysia Airlines flight 370 must have been a case of pilot suicide, specifically the Captain. The arguments in favour of this are poorly justified and Malaysia Airlines have already responded with a harsh rebuttal.

Malaysia Airlines slams authors for lies, falsehoods in book on MH370 – The Malaysian Insider

There is no evidence to support any of the claims made in the book, which is a product of pure conjecture for the purposes of profit by the authors and publishers.

Neither Wilson nor Taylor were involved in the investigation into the disappearance of MH370, yet they have offered an analysis beyond their knowledge and abilities.

They should both be ashamed of themselves for what is nothing more than a cheap and maligned publicity stunt.

One of the claims by Ewan Wilson which is making headlines is that he “found” five flights which he believes were also caused by suicidal pilots.

To clarify, to “find” these cases, you just need to go to the Aviation Safety Network, where there is a list of aircraft accidents caused by pilot suicide. ASN lists nine cases there but Wilson is clearly talking about commercial pilots carrying passengers. That leaves us with five cases, all totally documented.

Each of these five commercial pilots flying a scheduled passenger service is believed (by some investigating bodies, although not all) to have committed suicide, taking their aircraft and their passengers with them: an especially horrifying type of mass murder.

I considered this theory in The Mystery of Malaysia Airlines Flight 370 but as this is currently in the headlines, I decided take a better look at the five cases in question.

1982: Japan Airlines Flight 350

The first example is at best a failed suicide although I’m not sure it’s fair to say that the Captain intended to kill himself or his passengers.

On the 9th of February in 1982, Japan Airlines Flight 350 departed nine minutes late for its scheduled domestic flight from Fukuoka to Tokyo. The aircraft, registered as JA8061, was a DC-8-61 with 166 passengers and 8 crew on board. The flight crew consisted of the 35-year-old Captain, the First Officer and the Flight Engineer.

The flight proceeded normally from there until the final approach.

08:35 Flight 350 was given clearance to land and the wheels were dropped and flaps set ready for landing.

08:44:01 At about two hundred feet above the ground, the Captain suddenly turned the autopilot off, pressed his controls forward and deliberately engaged the thrust reversers of two of the engines.

These means that he reversed the flow of the engines so that the exhaust is directed forward, which is used in combination with the brakes to slow the aircraft upon landing. Reverse thrust on a jet is always selected manually, usually immediately after touchdown. They are not normally ever used in flight and many modern commercial aircraft cannot use reverse thrust in flight.

The DC-8 was one of few aircraft designed to allow for reverse thrust in the air — some military aircraft have also been able to safely deploy thrust reversers in flight in order to increase manoeuvrability, however the Concorde and the DC-8 may have been the only commercial jets to allow this. On the DC-8, the thrust reversers could be fully engaged on engines 2 and 3 in flight once the gear was down but many (most?) airlines prohibit the use of in-flight reverse even when the aircraft is certified for it. The effect would be rapid deceleration and a rapid loss of altitude.

Passengers reported that the aircraft nose dropped suddenly.

The First Officer immediately pulled back on the stick and the flight engineer struggled to pull the Captain away from the controls. Japanese television reported that the First Officer shouted “Captain, what are you doing?” while the engineer fought to gain control of the thrust control lever. However, the lack of thrust put the aircraft into a nose dive and they were too close to the ground to regain control. Eight seconds later, the aircraft hit the water.

08:44:07 The aircraft crashed into Tokyo Bay 510 metres short of the runway threshold.

Twenty-four passengers died in the crash. Initially, it was reported that the Captain had been killed in the impact. However, soon after they discovered that he had discarded his uniform and had been picked up in one of the first rescue boats, telling rescuers that he was an office worker.

The news soon came out that he had been suffering from mental issues and had been put on leave for a year for for mental (“psychosomatic”) issues. After the event, his flight crew from the previous day reported that he had been acting oddly.

Troubled Pilot – TIME

The revelations that appeared in the Japanese press last week painted a chilling portrait of a pilot with a troubled psyche. There were claims that Seiji Katagiri had been suffering from hallucinations and feelings of depression. He once summoned police to his two-story house near Tokyo because he was convinced it was bugged, but a thorough search turned up no eavesdropping devices. On three occasions, his employers had urged him to see a psychiatrist.

The Captain was arrested for “professional negligence resulting in deaths” but was found to be not guilty by reason of insanity.

1994: Royal Air Maroc Flight 630

This was the most difficult of the cases to research as there is very little information online.

On the 21st of August in 1994, Royal Air Maroc flight 630 departed Agadir Al Massira Airport on a scheduled domestic flight to Casablanca. The ATR 42/72 twin turboprop, registration CN-CDT, held 40 passengers and 4 crew.

The aircraft departed at 19:00 local time and began its climb. About ten minutes after the departure at 11,480 feet feet, the aircraft suddenly entered a steep dive and crashed into the Atlas Mountains about 30 kilometres (20 miles) north of the airfield.

The investigation concluded that the pilot disconnected the autopilot and then deliberately flew towards the ground. The First Officer made an immediate call on the radio, screaming “Help, help, the Captain is…” but her call was cut off as the aircraft impacted the ground.

A statement at the time by the Transport Minister stated that the accident was “due to the deliberate will of the pilot who wished to end his life.”

The Moroccan Pilot’s Union originally disputed the suicide explanation stating that there was no evidence that the pilot was disturbed or had any grounds to kill himself. The cockpit voice recorder was published in France and apparently confirms the initial reports of the sequence of events. The final investigation report was meant to explain this more thoroughly but there is no copy of the report online. However, the union did not make any further arguments after their initial statement and there appears to be no remaining doubt that the Captain of the flight deliberately took control of the aircraft in order to kill himself and everyone on board.

1997 SilkAir Flight 185

The next case has been the subject of two investigations and considerable controversy. The timeline below is taken from the official report released by the Indonesian National Transportation Safety Committee.

On the 19th December in 1997, SilkAir flight 185 departed for its scheduled flight from Jakarta, Indonesia to Singapore with 97 passengers and 7 crew members on board. The aircraft was a Boeing 737-300 registered as 9V-TRF. It was less than a year old and the newest aircraft in SilkAir’s fleet.

08:37 UTC (15:37 local time) SilkAir flight 185 departed Soekarno-Hatta airport in Jakarta for an 80-minute flight to Singapore and began its climb out. The Captain was the Pilot Flying.

08:53 The aircraft reached its cruising altitude of FL350 (35,000 feet) and the flight crew was cleared direct to waypoint PARDI and told to report when abeam Palembang.

09:04:57 The Captain stated that he was going to go to the passenger cabin. Several metallic snapping sounds were recorded, which the NTSB believe were sounds made by the seatbelt buckle.

09:05:15 The cockpit voice recorder stopped recording

09:10:18 ATC informed SilkAir flight 185 that they were abeam Palembang and to contact Singapore Control when at waypoint PARDI.

09:10:26 The First Officer acknowledged this call. This means we have confirmation that the First Officer was in the cockpit at this time. No distress call was ever made or any sign given that there might be an issue with the aircraft.

09:11:33 The Flight Data Recorder stopped recording.

This was 6 minutes and 18 seconds after the CVR stoppage and approximately 35.5 seconds before the aircraft started its descent. Up to the point at which it shut down, the FDR showed no indications of unusual disturbance or other events affecting the flight.

09:12:09 Jakarta ATC radar recording showed the aircraft still in the cruise at FL350

09:12:17 Jakarta ATC radar recording showed that the aircraft had descended by 400 feet. The aircraft then went into a nearly vertical dive.

09:12:41 Jakarta ATC radar recording showed the aircraft passing through FL195 – in less than thirty seconds, the aircraft had descended 15,500 feet. That averages to 645 feet per second or 38,750 feet per minute.

A normal descent in a Boeing 737 would be around 1,500-2,500 feet per minute. After twenty four seconds, the aircraft began to disintegrate.

In less than a minute, the aircraft crashed into the Musi River. In the final seconds before impact it was travelling faster than the speed of sound.

There was no evidence of any malfunction which would explain why the recorders stopped recording nor why the aircraft would go into such a steep and fast descent. The radio continued to work, showing that there was not a general power failure in the cockpit. However, without the Flight Data Recorder, we have no definitive proof of what happened on the aircraft.

The Indonesian National Transportation Safety Committee reported that it could not determine a cause of the crash due to inconclusive evidence.

The NTSB held its own unofficial investigation. US investigators concluded that the recorders were intentionally disabled to hide a deliberate action to crash the aircraft, most likely by the captain who left the cockpit to disable the circuit breakers and then returned and manually held down the control inputs for nose-down flight at full speed.

1999: EgyptAir Flight 990

EgyptAir flight 990 was a regularly scheduled flight from Los Angeles to Cairo with a stopover in New York. The aircraft was a Boeing 767-300ER, registration SU-GAP, with 203 passengers and 14 crew on board.

On the 31st of October 1999, the flight departed JFK airport in New York at 01:22 local time as a scheduled international flight.

Again, the situation on this flight is convoluted and there were two investigations. Initially the Egyptian Civil Aviation Authority, who had jurisdiction over the accident, delegated the investigation to the NTSB in the US. The NTSB began their investigation but then proposed handing the investigation to the Federal Bureau of Investigation, as their evidence suggested the aircraft crash was intentional rather than accidental. The Egyptian Civil Aviation Authority refused and the NTSB continued their investigation which continued to point to a deliberate action by a crew member. However, the Egyptian Civil Aviation Authority believed that the NTSB was not sharing information and stated that they often learned of the NTSB’s views in the press. The Egyptian investigators had access to the data collected by the NTSB and launched their own investigation which concluded that the crash was caused by mechanical failure.

This is the first accident ever where I’ve been unsure as to which report is the official investigation.

The general sequence of events on the flight is agreed by both parties and I have used both reports for reference.

01:26:35 EgyptAir flight 990 contacted New York Centre and continued to climb to FL230 as they flew out over the Atlantic.

01:35:52 EgyptAir flight 990 was cleared for a cruising altitude of FL330, roughly 33,000 feet above sea level.

01:40 The Relief First Officer suggested that he relieve the Command First Officer at the controls, stating “I’m not going to sleep at all. I might come and sit for two hours, and then…” that is, offering to fly his portion of the trip at that time. After some discussion and catty comments, they agreed that the Relief First Officer would get some food and then start his shift. The Relief Officer appeared to have taken the First Officer seat within the next few minutes.

01:41:52 An oceanic clearance was issued and acknowledged by the flight crew.

01:47:18 New York Centre requested that EgyptAir flight 990 change frequencies.

01:47:39 EgyptAir flight 990 changed frequencies and the Captain reported in with “EgyptAir ah, nine nine zero heavy, good morning” on the new frequency. This was the last transmission to ATC from the aircraft.

01:48:03 The Captain said to the Relief First Officer, “Excuse me [RFO nickname], while I take a quick trip to the toilet.” The Relief First Officer responded with “Go ahead please.”

After the Captain left the cockpit, sound was recorded in the cockpit which included human speech but it was not possible to identify who was speaking or what the words were.

01:48:34 A click and a thump was reported, followed by the Relief First Officer saying “I rely on God.”

10:49:45 EgyptAir flight 990 was cruising on a heading of 080 at 33,000 feet when the autopilot was disengaged, almost certainly manually and intentionally, as there was no aural warning. The aircraft remained in level flight for about eight seconds when the Relief First Officer said again, “I rely on God”.

01:49:53 The throttle levers were moved from cruise power to idle and an abrupt nose-down elevator movement was recorded. The aircraft pitched nose down and began a fast descent. The Relief First Officer repeated his statement of “I rely on God” another seven times.

01:50:06 The Captain returned to the cockpit and said “What’s happening? What’s happening?” The elevator movements continued and the aircraft began to pitch down.

01:50:08 The aircraft exceeded its maximum operating airspeed. The Relief Officer repeated again “I rely on God” and the Captain, “What’s happening?”

01:50:20 The aircraft descended to 21,000 feet and the elevator movements changed to a nose up direction, which the NTSB believes were the result of the captain making nose-up flight control inputs. The aircraft’s rate of descent began to decrease. That’s when the left and right elevator surfaces began to move in opposite directions. The aircraft’s elevator had split.

Up until this time, the elevator surface movements were slightly offset but consistent (that is, both were moved in the same direction at the same time). This is where the reports diverge: the Egyptian report concludes that the mechanical failure already existed before the aircraft left New York for Cairo and eventually caused the aircraft to go out of control. They state that the Relief First Officer disconnected the autopilot after observing some unusual movement of the column and throughout was trying to regain level flight. The US report concludes that the dive was initiated by the Relief First Officer and the resulting stresses on the aircraft, specifically the two pilots applying force on the control column in opposite directions, caused the elevator split.

01:50:35 At 16,000 feet, the Flight Data Recorder and the Cockpit Voice Recorder ceased recording. Radar recordings showed that the aircraft climbed again, this time to approx 24,000 feet and then entered a final dive into the ocean. During the dive, the aircraft reached an estimated airspeed of 0.99 Mach and experienced g-forces from +0.98 to -0.227 before it crashed into the ocean.

2013: Mozambique Airlines Flight 470

On the 29th of November in 2013, the regularly scheduled Mozambique Airlines flight departed from Maputo International Airport to Luanda, Angola with 6 crew and 28 passengers onboard. The flight progressed normally and the aircraft was in contact with Gaborone Area Air Traffic Control and cruising at 38,000 feet. Radar showed that the aircraft, an Embraer EMB-190, suddenly started descending at 6,000 feet per minute and then disappeared. The aircraft did not arrive at Luanda, where it was scheduled to arrive about 90 minutes later and there were no reports of unscheduled landings anywhere in the region of the route.

Search and Rescue teams found the wreckage in the Mbwabwata National Park the following day and recovered the black box with the flight data recorder and the cockpit voice recorder. The Flight Data Recorder revealed that the aircraft had no mechanical faults. However, it also showed unexpected configuration changes in the cockpit.

A few minutes before the crash, the First Officer left the cockpit and went to the washroom.

The captain, alone in the cockpit, manually selected the aircraft flight altitude three times. He changed the flight altitude from their cruising altitude of 38,000 feet to 592 feet. The elevation around this time was over 3,000 feet, making the final flight altitude selection below ground level.

Then the auto-throttle was re-engaged. With the steep descent, the throttle level automatically retarded, setting the power to idle. The Captain manually selected the airspeed and set it to the maximum operating speed of the aircraft.

There was no evidence of accidental configuration. All of these actions displayed a clear understanding of how the automatic flight systems worked and with clear intent.

The autopilot was on and the aircraft hurtled to the ground. During this time, various warnings and alarm chimes could be heard sounding in the cockpit but the Captain did not appear to take any notice of them. Then there was the loud sound of banging on the cockpit door with demands to be let into the cockpit. The spoilers were deployed and held until the end of the recordings, proving that the aircraft was under human control as it descended at 6,000 feet per minute.

From the preliminary report:

All action observed from the recorders requires knowledge of the aircraft’s automatic flight systems as the entire descent was performed with the autopilot engaged. This displays a clear intent. The reason for all these actions is unknown and the investigation is still ongoing.

The aircraft crashed into the border area between Botswana and Namibia at high speed. There were no survivors.

The final report has not yet been published but if it is not complete by the one year anniversary of the accident, an interim report should be released with updates as to their progress.

Conclusion

Note that in every instance, if we accept that each of these was in fact an intentional suicide, the pilot chose to take control of the aircraft and crash it immediately. This is a huge contrast to Wilson’s theory:

‘Suicidal pilots killed 600 people’ says expert ahead of Birmingham event – Birmingham Mail

Mr Wilson believes that pilot Shah shut his co-pilot, Fariq Hamid, out of the cockpit on flight MH370, then shut off all communication and turned the aircraft around, veering off course.

He then depressurised the plane, and once the cabin crew and passengers’ oxygen had run out, they died from hypoxia.
The accident investigator believes that the pilot then made eight different course changes before finally allowing MH370 to fly on auto-pilot for the last few hours of its journey into the southern Indian Ocean.

The Australian Transport Safety Board published a report which is referenced as a part of the theory, because they stated that the final period of the flight appeared to fit the characteristics of an unresponsive crew/hypoxia event. However, the idea that the Captain was in control and deliberately disabled the passengers and crew in order to fly on autopilot until the aircraft ran out of fuel is quite a step beyond that and certainly not a theory that the ATSB, or any other investigating body, has put forward as viable.

The five pilot suicide/murder cases cited all show a clear course of action by the pilots: gain control of the aircraft and crash it as quickly as possible.

In no instance has a pilot ever tried to disable flight crew, cabin crew and hundreds of passengers and then fly the aircraft on autopilot until it ran out of fuel before gently guiding it into the water. It makes for a lovely Hollywood ending but in a real-world tragedy, it’s all plot and not enough facts.


If you found this interesting, you might like to pick up my books: