19 December 2014

Near Miss with Drone at Heathrow

Last week, an Airprox Report was released regarding an incident in Heathrow airspace. An airprox is the term for a situation where the pilot or air traffic controllers believe that the distance between aircraft (taking into account relative positions and speed) are such that the safety of the aircraft involved may have been compromised.

FAQ Details | UK Airprox Board

If a pilot or controller is of the opinion that the distance between aircraft as well as their relative positions and speed was such that the safety of the aircraft involved was or may have been compromised then he or she may report an Airprox. In Airprox 016/2002 for example, the separation recorded on radar between the two aircraft was 400ft vertically and 3 miles horizontally: this is hardly a ‘near miss’ in the way people generally use these words. In the judgement of the air traffic controllers who reported the event it was an Airprox and was therefore fully investigated and assessed by the Airprox Board.

This particular airprox report is interesting because it involves a British Airways passenger plane and an a unmanned aircraft.

On the 22nd of July 2014, an Airbus 320 was on short final to land at Runway 09 Left at Heathrow. The weather was clear and the visibility was good. The pilot saw a small black object as the aircraft descended past 700 feet. He described it as a small radio-controlled helicopter and said that it passed about 20 feet over his left wing.

The model helicopter did not strike the aircraft and there was no further issue, however as the report notes, it was a serious distraction at a critical level of flight. The pilot reported it immediately to Heathrow Tower who warned inbound aircraft of the unidentified object but no further sightings were made.

At 700 feet, it seems likely that the “helicopter” was a multi-rotor aircraft using GPS, which can easily be bought in any enthusiast shop.

The Airprox Board worked with the local model-flying-club but were not able to identify the unmanned aircraft nor trace the operator.

AIRPROX REPORT No 2014117

The Board members were satisfied that the A320 crew had seen a model helicopter and were of the unanimous opinion that the operator of the model had chosen to fly it in an entirely inappropriate location. That the dangers associated with flying such a model in close proximity to a Commercial Air Transport aircraft in the final stages of landing were not self-evident was a cause for considerable concern.

A spokesman for the CAA told the BBC that the CAA had to depend on people using their common sense when they operated drones.

It seems odd to even have to point that out, but a similar event at Stockholm resulted in the operator of a drone blissfully unaware that he’d just shut down the airport.

That was just last week, when Stockholm-Bromma Airport had reports of a drone in the local area. The Swedish CAA closed the Bromma CTR for all traffic below 2000 feet which stopped all flights going into and out of the airport.

An hour later they found the man operating the drone. He was documenting the construction of a motorway and had no idea about airspace or that there were any restrictions on where he could fly his drone.

A powerful drone bought on the high street will weigh 7-10 kilograms; large enough to cause real danger to commercial aircraft. The U.S. Air Traffic Controllers Association (NATCA) has stated that reports of drones flying dangerously close to passenger aircraft is becoming a daily occurrence. The fact that they are flown at low altitudes mean that they are often interfering with aircraft on final approach, as in the Heathrow incident.

In the UK, an unmanned aircraft must remain within the line of sight of the person operating it and must not be flown within 150 metres (492 feet) of a congested area or large group of people. In the US, they may not be flown above 400 feet. Both countries have an exclusion zone around commercial airports where no unmanned aircraft can be flown without ATC permission.

Having seen the issue with lasers over the past few years, however, I suspect the issues with hobbyist drones at airports has only just begun.

12 December 2014

Plane vs Truck

This photograph is so remarkably perfectly timed, I thought it must be a still from an action movie or television series, done with special effects.

It turns out it’s absolutely a case of impeccable photography by Mr Robert W Madden, who was at the right place at the right time and managed to frame the shot perfectly.

It was taken in Guatemala in the aftermath of a magnitude 7.5 earthquake which struck Guatemala City on the 4th of February 1976.

Earthquake rocks Guatemala City — History.com This Day in History — 2/4/1976

It was 3:04 a.m. when the first large tremor, centered six miles under the Earth’s surface 120 miles northwest of Guatemala City, struck. The quake was the result of a clash between the Caribbean and North American plates on the Motagua Fault. In a matter of minutes, about one third of the city was destroyed. All over the city, sleeping residents were crushed and killed when their weak adobe homes collapsed on top of them.

Immediately, efforts began to rescue the thousands of people buried beneath the rubble. Many people could not be saved, as it was extremely difficult to get help to the city. The roads and bridges leading to Guatemala City had been extensively damaged. Thousands of those people lucky enough to be pulled out alive suffered broken backs and pelvises. It is estimated that more than 70,000 people suffered serious injuries. The U.S. Air Force assisted by airlifting food and medicine into the area. With all the available hospitals filled beyond capacity, the United States also set up a field hospital in Chimaltenango. The number of deceased overwhelmed the authorities, so communal grave sites had to be established. To make matters worse, strong aftershocks followed for an entire week, terrorizing the survivors, who were staying in improvised shelters.

Bob Madden worked for National Geographic magazine and was in Guatemala covering the rescue and recovery operations. He had apparently just disembarked from another aircraft and was standing on the highway near Sanarate.

The rescue plane was bringing food and medicine to the quake victims. It was trying to land on the highway when it got caught in strong crosswinds.

Amazingly, no one was seriously injured. The two men on the left of the photograph leapt from the pick-up truck just before the crash, adding an undeniable personal aspect to this unbelieveable photograph of the aircraft impacting the truck.

The spectacular photograph was featured in the June 1976 issue of National Geographic which was dedicated to the earthquake. This year Natijonal Geographic editors featured it as one of their 50 Greatest Pictures in a special in National Geographic magazine. It also won second prize in the “Spot News” category for 1976, which makes one wonder what the first prize photograph could possibly have shown.

Bob Madden has a great photography blog with tips and tricks as well as the opportunity to join him on a photo safari or photography workshop. In a post about patience, he has a published a number of his best photographs where he cites the amount of time it took him to get the photograph. Most of them are quite long: 15 days, five months, four hours. Underneath the photograph of the plane crash, however, it simply says Two seconds!.

It’s a brilliant example of how skill and instinct can make all the difference when you are in the right place at the right time.

I wasn’t able to find anything out about the plane or the pilot, although I did discover that you can buy a greeting card of the photograph. I have to admit, I’m not sure what the appropriate occasion might be.

05 December 2014

A Fun Set of Videos for the Weekend

These are all good-hearted aviation videos which are being passed around that I thought you might enjoy. Surely you can’t have already seen them all!

Note: if you are reading this in your inbox, you’ll need to click through to the post in order to see all the embedded videos.

If you aren’t reading this in your inbox, why not sign up now! You’ll get the posts emailed to you each Friday (and nothing else, no spam).

This viral video shows real community spirit, when an aircraft full of passengers got out into weather of -50C to push their aircraft onto position on the runway:

One of the passengers puts it simply: “We all want to get home.”


This is closer to power lines than I ever want to be in a flying machine:

They are fixing damaged wires and cables on live high voltage power lines. I was holding my breath while I watched.


I have seriously always wanted a jetpack:

In my imagination they would be a bit more portable and less like a strapped on car, though.


This video is a bit older but still quite frightening to watch from the 6 minute mark onwards:

Spoiler: the Cap-21 at College Park Airshow was able to land safely despite the lack of a propellor.


I found this documentary about the Hawker Hunter is fascinating:

The Hawker Hunter is a subsonic British jet aircraft developed in the 1950s. The single-seat Hunter entered service as a manoeuvrable fighter aircraft, and later operated in fighter-bomber and reconnaissance roles in numerous conflicts.


An amazing video of atmospheric affects around aircraft:

Fantastic and surreal footage taken when the dew point and the air temperature line up to show trailing vortices and wing condensation.


I’m still amazed by the A350 formation flight in September. Airbus have now released a “making of” video about how they did it.

The attention to detail is very telling and it’s just wonderful to see those five aircraft flying together again. Full credit to Airbus for making this excellent display and allowing us a view behind the scenes.


And finally, this documentary follows the final flight of a Qantas Boeing 767-300ER as it goes to Victorville* airplane graveyard, “where planes go to die.”

I have to admit, I felt a bit teary eyed for the poor little Boeing.


I hope you enjoyed those. See you next week!

* Little known fact: when I was 16, an earnest young gentleman asked me to run away to Victorville with him to get married and live happily ever after. If I’d known about the airplane graveyard back then, I might have been tempted!

28 November 2014

Overloaded, Overspeed and Out of Fuel

The situation started quietly: a Boeing 757 inbound to Newcastle International Airport (NCL) was asked to do a go around: break off the approach and try again.

The Thomas Cook aircraft was a Boeing 757-237 registration G-TCBC. There were seven crew on board and 235 passengers. The crew was scheduled for an early morning flight from Newcastle to the Canary Islands, landing at Fuerteventura and returning to Newcastle that afternoon. They could expect to be home for suppertime.

The Commander was 56 years old and held his ATPL with 13,374 flying hours (1,380 on type). He’d spent two and a half years flying the Boeing 757 before the incident. Prior to that, he’d flown Airbus aircraft for over thirteen years. He said he’d reached a stage where he felt comfortable with the B757. His First Officer had been rated on the Boeing 757 for over five years.

They reported for duty that morning at 0500 hours. The Captain said they were as well-rested as could be expected for that time of the morning. His mindset about his job was less than positive.

He sensed that the airline was in turmoil due to a major internal re-organisation programme. The direct effect for him was that he had been told that he would be one of several captains who would be demoted to first officer in March 2014 and that his salary would reduce significantly. He was unhappy about this impending change and the matter weighed heavily on his mind at work, despite his best efforts to ignore it.

The day’s flights were uneventful until they were on final approach to Newcastle. The Captain was the Pilot Flying. The runway was wet and the Automatic Terminal Information Service included a pilot report of windshear at 500 feet which had caused his aircraft to lose 15 knots of airspeed.

The Boeing 757 was set up with the landing gear down and flap 20, preparing to land with flap 25 as per Standard Operating Procedure. After a slightly late turn onto the intercept heading, the aircraft overshot the centreline in the process of capturing the localiser heading. Air Traffic Control noticed the overshoot and gave a new intercept heading.

The Captain thought there was a technical fault and commented on this to his First Officer repeatedly over the next few minutes. After the incident, no evidence of a system fault was found. The investigation found that the Captain believed that he’d experienced more technical problems than was usual for the past few months.

The flight crew had clear sight of the runway and the aircraft landing ahead of them. Everything seemed good.

Then the aircraft in front reported a possible birdstrike on the runway. Air Traffic Control immediately called the Thomas Cook Boeing 757 and instructed the flight crew to go around.

The Captain responded by saying “Go around” three times. He applied maximum thrust and disconnected the autothrottle.

The First Officer hadn’t expected a go around when everything looked fine and simply wasn’t sure what was happening. He heard the Captain’s repetition of the go around but it was not a standard call. The Captain’s call should have specified a flap setting, which would serve as the First Officer’s first instruction. He wasn’t quite sure what to do.

Air Traffic Control instructed the aircraft to climb straight ahead to 3,500 feet above mean sea level. The standard missed approach procedure, which both pilots would have reviewed before the flight, was to climb to 2,500 feet.

The controller probably meant to simplify the go-around procedure for the crew but this instruction came in as the crew were trying to initiate the change in plans and under a high work load. As a result, it was just another distraction.

The go around was badly handled. The Captain did not press the G/A (go-around) switch which would have helped configure the aircraft for him; specifically, it would have cleared the localiser and glideslope data until they set the aircraft up for the new approach. The Captain also did not disconnect the autopilot as a part of his initial response. So now, the autopilot was still trying to track the localiser and glidescope for a landing which they’d already missed.

Takeoff/Go-around switch – Wikipedia

The go around setting is used when an approach is taking place. If a pilot finds that they are unable to land, activating this switch (pushing thrust levers to TOGA detent) will increase the power to go-around thrust. Most importantly, the TO/GA switch modifies the autopilot mode, so it does not follow the ILS glideslope any more and it overrides any autothrottle mode which would keep the aircraft in landing configuration. On Airbus aircraft it does not disengage the autopilot, but causes it to stop following the ILS and perform Go Around maneuver automatically. In an emergency situation, using a TO/GA switch is often the quickest way of increasing thrust to abort a landing. On Airbus planes pushing throttles to TOGA detent does all regarding flight path and speed.

However, instead of using the TOGA switch, he disconnected the autothrottle and applied maximum thrust. At full power, the aircraft accelerated and continued to descend.

The speed was 187 knots and still increasing when the Captain said “go around” again and finally disconnecting the autopilot. An unexpected go around is always stressful and now he had to fly the aircraft manually and force himself to disregard the commands coming from the flight director, which was still set up for the approach. He did not tell the First Officer of the configuration changes and didn’t say anything as he disconnected the autopilot.

The First Officer didn’t check the panel so he didn’t realise that the aircraft had not been set up for the go around. Standard operating procedures had broken down and he became confused. His job, as pilot monitoring, was to watch for discrepancies, especially speed. He was aware that the go-around call was incomplete and that he hadn’t modified the flap settings but instead of querying the situation, he responded to the Air Traffic Control call, confirming that they would climb to 3,500 feet, and then he input the height on the mode control panel.

The First Officer was selecting the new altitude when the master warning alert sounded. He cancelled the master warning. He didn’t spot that the autothrottle had been switched off, although at this point he noticed that the Captain had disconnected the autopilot. The First Officer looked at the Captain to make sure everything was all right, surprised that he was flying the go around manually.

The aircraft reached the Flap 20 speed just after the autopilot was disengaged as the aircraft pitched up. Although the gear was retracted, the Flap 20 setting remained for a further 30 seconds.

The Commander called for Vref+80 climb thrust. Vref is the speed for the aircraft which is the safe manoeuvre speed with flaps up. In this instance, Vref was 125 knots so plus 80 means that the Captain wanted to go 205 knots.

But the First Officer became flustered when he couldn’t set the speed.

Because the commander called for a target speed of VREF+80 and climb thrust, the co-pilot tried to select the relevant speed on the MCP. However, he was unable to open the speed window to do so. He recalled that before the departure from NCL, an engineer had said the previous commander had mentioned having difficulty in viewing one of the digits in the speed window, so the co-pilot wondered if there was a technical malfunction. Meanwhile, although he was aware that the speed was increasing rapidly, he was trying to retract the flaps and failed to monitor the speed adequately.

Although he’d flown the Boeing 757 for over five years, he had very little experience performing a go around and couldn’t remember having practised much in the simulator training. Now he’d become overloaded. He had too many tasks at the same time; the human response to this is to limit the amount of processing and over-focus (or fixate) on a single task. He lost all overview of the situation and of his role as pilot monitoring.

The limit for safe manoeuvring of the aircraft with flaps set to 20 is 195 knots. The aircraft had exceeded this by 18 knots before the flaps began to retract. The aircraft speed remained above the flap limit speeds up until the point when the flaps were fully retracted. The aircraft reached 287 knots before the thrust levers were set back to idle position from the go around.

That’s what is known as overspeed: the airspeed has exceeded a safe limitation. In this case, the safe speed for the extended flaps was exceeded, which can cause damage to the flap system. In the case of a flap overspeed, a full inspection must be made of the flap system before the aircraft can fly again.

The Captain was doing his best to climb and maintain 3,500 foot above mean sea level flying by hand. He later described his First Officer as “stunned” and said that he was not offering the support that he could have.

The Captain asked for the autopilot to be engaged but that proved problematic as well. They didn’t speak, but the flight recorder shows that the autopilot was repeatedly engaged and disengaged over the course of the next few minutes. This may have the result of movements on the control or that the Captain was inadvertently disengaging it using the pitch trim before realising it had engaged.

Meanwhile, as the go-around switch had never been set, the Flight Director modes for localiser and glideslope were still set. The only other way to clear this would have been to turn the flight director off and on again. So even if the flight crew managed to engage the autopilot, it would still be trying to track the localiser and glideslope for the active runway, now behind them.

They were in a mess.

They were lucky that although the aircraft was flying well above the safe limits for the flaps, the flaps retracted normally. As they retracted past flight 1, the leading edge slats began retracting. However, due to the speed, the leading edge slats failed to fully retract. They stopped, partially extended. A caution message appeared on the Engine-Indicating and Crew-Alerting System (EICAS) but neither flight crew member acknowledged the caution.

It took six minutes for the First Officer to set up the speed window and autothrottle and the autopilot so that the autopilot could remain engaged.

Meanwhile air traffic control gave the flight crew vectors to lead the aircraft downwind under radar control for another approach to Newcastle. The workload was such that the aircraft was flying almost 500 feet below their cleared altitude (3,500 feet) and neither pilot noticed.

The First Officer suggested that they enter a holding pattern. The Captain decided not to and instead said they should extend the downwind leg. The First Officer informed Air Traffic Control that they had a slight technical problem.

The Captain asked how much fuel was remaining and the First Officer told them that they had 3,600 kg.

The First Officer was right to ask for a holding pattern: the flight crew were racing behind the plane and a holding pattern would give them the chance to find out what was going on. Although the Captain later stated that his First Officer seemed flustered and not giving full support, he turned down this opportunity to get caught up. By extending the downwind, the Captain made them do a whole new set of calculations. This solution did not relieve any of the pressure on the crew.

The First Officer spoke to Newcastle control on the radio as he started the Leading Edge Slat Disagree check list. He followed the first four steps correctly but at step five he made a mistake. The checklist said that the alternate flaps selector should be set to agree with the flap lever. He should have set the selector to UP as the flaps had been retracted. Instead, he set the alternate flaps selector to flap 1.

Eventually the automatics were successfully engaged but the slats remained partially extended due to an exceedence of the limiting speed by a significant margin. The co-pilot began the relevant Quick Reference Handbook checklist but he was frustrated by his poor performance prior to that. Interruption caused him to lose his place in the checklist and instead of starting again, in accordance with SOPs, he struggled to find where he had got to. The similarity in presentation of steps 2 and 4 made this quite difficult. Step 5 required the alternate flaps selector to be positioned to agree with the flap lever. The flap lever was in the up position but the co-pilot set the alternate flaps selector to flap 1, possibly as a result of his heightened anxiety.

In step six, the leading edge flaps were set to alternate. The First Officer did this, which meant that the leading edge flaps ran to the commanded flap 1 position.

This cleared the Leading Edge Slat Disagree message… but now the Trailing Edge Flap Disagree message lit up.

The First Officer hadn’t completed his checklist but the Captain saw the new caution and told the First Officer that he should change to the Trailing Edge Flap Disagree checklist.

Step seven, the next step of the checklist, would probably have made it clear to the First Officer where it had all gone wrong but he never got that far.

He started the Trailing Edge Flap Disagree checklist. This time he made it to step three before being interrupted by a radio call from Newcastle Tower. The extended downwind meant that the aircraft had now left controlled airspace.

It would have been nice if Air Traffic Control had notified them of this before they’d made it that far, giving the flight crew a choice to stay in controlled airspace to retain the best traffic separation service. As it was, they continued.

Standard operation would be that the Pilot Flying deals with the radio while the Pilot Monitoring goes through the checklists but neither flight crew ever seemed to consider the division of duties.

The First Officer acknowledged the ATC call and went back to his checklist. The Captain interrupted him again, asking for more flap. He was increasingly convinced that they had a flap fault and wanted to confirm the problem. “Let’s go for flap 5,” he told the First Officer.

The First Officer stopped the checklist and tried to move the flaps with the flap lever. He was clearly disorientated as he selected both the flap lever and the alternate flaps selector to the flap 5 position. Nothing happened.

The Captain did not notice that the First Officer had mishandled the flaps but he did notice that the flaps were not moving. This was the confirmation he was waiting for: they had a flap fault and would have to do a flapless landing.

The First Officer never completed the checklist. Had he ever completed steps four and five, the flaps would have been controlled and referenced to the alternate flaps selector: that is, he would have been led to diagnose the actual fault which he had caused.

No other flap/slat issues were recorded for the remainder of the flight and the landing was made using flap 30. Other than the conditions associated with excessive speed and partial slat extension, the flap and slat parameters reacted as expected for the given crew selections.

The Captain needed to decide what to do.

He explained later that he had a landing distance of 1,600 metres in his head for a flapless landing, and that the week before, he’d seen an aircraft landing at Newcastle with flap 20 and it had appeared to use much more than this. He knew that the Newcastle runway didn’t have a stopway for overruns. He didn’t like the idea of a flapless landing on that runway, which was wet and had reported windshear earlier.

The flight’s alternative airfield was Edinburgh but he knew the runway there was not much longer than Newcastle’s.

“That’s all the flap we have got,” said the Captain. “We need a longer runway, don’t we.”

The First Officer knew where the closest longer runway was. “Yeah, we need Manchester, don’t we?”

It seemed obvious to both of them: so obvious that neither checked the Calculation of Operational Landing Distance which would have told them that the runway at Newcastle was plenty long enough for a flapless landing. There was no discussion of the decision, let alone a review.

They needed 2,000 kg of fuel to fly to Manchester, which meant using the final reserve fuel. The Captain decided that they must divert immediately.

The First Officer agreed and informed Newcastle that they could not get the flaps down and that they were diverting to Manchester.

Fuel Emergency (EU-OPS 1.375 b)

The Commander shall declare an emergency when the calculated usable fuel on landing, at the nearest adequate aerodrome where a safe landing can be performed, is less than final reserve fuel.

The Captain had never dealt with a low fuel situation but he told investigators that he knew that he needed to make a MAYDAY call as soon as he was aware that they would need to use final reserve fuel. He could not explain why he did not do so.

Thomas Cook, the operator of the flight, did an internal investigation to try to understand how the situation has deteriorated from a simple go around at Newcastle. They came to the conclusion that the pilots felt more in control of the situation once they had made a decision, so although they knew it meant landing with less fuel than normal, they accepted this as a necessary part of the solution.

Meanwhile, Air Traffic Control instructed the flight to turn onto heading 230º and climb to FL100 and asked what cruising altitude they would like. The flight crew decided it was better to stop the climb at 10,000 feet. The First Officer selected Flap Up without going back to his unfinished checklist. He forgot about the alternate flap selector which he’d set to flap 5, so the flaps remained partially extended. Neither pilot ever thought to check the pressure settings.

They proceeded with the flight.

The forward fuel pump low pressure light illuminated on the fuel panel. The First Officer commented on this but no action was taken. Meanwhile, the Captain called in the cabin manager for a briefing on the flaps situation and to explain that they were diverting to Manchester.

Air Traffic Control cleared the flight direct to Pole Hill VOR.

The flight crew levelled off at what they thought was FL100, 10,000 feet above sea level. However, they hadn’t changed the pressure settings and so the pressure was still set up for Newcastle. When the aircraft levelled off, it was 420 feet above the cleared level.

Now the First Officer found that he could not program the new route into Route 1 in the flight management computer. The Captain used raw data to navigate towards the Pole Hill reporting point.

The commander used the heading select to navigate by hand towards the Pole Hill reporting point. Clearly frustrated with all the technical difficulties they were experiencing, he decided that they needed to declare a MAYDAY.

They should have done this as soon as they knew that the aircraft was going to land with less than final reserve; that is, when they diverted for Manchester.

The First Officer told Air Traffic Control but didn’t use the standard phrasing. Instead, he almost conversationally added “and we want to declare a mayday” at the end of a call.

The controller acknowledged this with “Roger” and then followed up. “Have you got any more details for the paramedic?” He had clearly presumed that there was a passenger issue on board as he had no information to lead him to believe that the flight was in difficulties.

The First Officer explained that they didn’t need a paramedic but that they would be making a flapless landing at Manchester. He did not mention the fuel situation. His attention was split between the flight management computer and the radio calls. As a result, his performance was extremely poor.

He had lost confidence in his own ability and he had probably reached an over-aroused mental state, where his capacity to think straight had started to deteriorate. Like the commander, he was now experiencing a low fuel scenario for the first time. At this point it is likely they were both task-saturated. This helps explain why the After Take-Off Checks were missed.

It’s likely that he couldn’t program the new waypoint in the flight management computer because he hadn’t activated Route 1. In any event, he eventually decided to enter the data into Route 2 which was then activated. The flight crew were finally receiving navigational assistance from the flight management computer for the first time since the initial go around.

That’s when the LOW FUEL caution light and the fuel configuration light turned on. The First Officer then told Air Traffic Control that they were requesting a priority landing due to a low fuel warning. Newcastle Air Traffic Control said they would pass the message on and asked if an emergency was being declared.

The First Officer confirmed this and he was asked to squawk 7700, which is the code for a general emergency. This means that for every controller in the area who could see the flight on secondary radar, it was clear that the flight crew had declared MAYDAY.

At no point did the crew discuss the fuel situation. They didn’t appear to take into account the extra miles they were covering in their approach from east of Newcastle, nor the fact that they would use more fuel because of the non-standard flap configuration for the cruise. They’d decided to stay at 10,000 feet but their predicted fuel burn was based on cruising at 17,000 feet.

The First Officer tried again with the flaps and this time after various selections, he found that the flaps appeared to be working normally. He’d managed to turn off the alternate flap lever, which cleared the disagree indications. He retracted the flaps to conserve fuel and concluded that the flaps were finally back under normal control (although they had been all along).

The Quick Reference Handbook specifically warns against troubleshooting by deviating from non-normal procedures prior to the completion of appropriate checklists. The crew ignored this and made random flap selections without referencing either checklist.

They managed to regain normal control of the flaps, but if they’d followed the Quick Reference Handbook in the first place, they wouldn’t have even had to consider a flapless landing, let alone a diversion.

At any event, their flaps were now clearly working as expected. They’d had a low fuel indication for fifteen minutes and the Captain knew that Newcastle was still the nearest airport. He didn’t revisit the plan but continued to Manchester. He later told investigators that they’d already made the decision to divert and besides, he didn’t think the First Officer would consider a return to Newcastle.

…the commander felt there was little time available to conduct a joint review of the situation but that he did mentally review things himself. He also remarked that the situation had felt unreal and that it seemed to get out of control very easily. He recalled that on a couple of occasions he had tried to offer the co-pilot some reassurance.

The First Officer changed frequencies to Scottish Control and identified the aircraft. He did not mention the MAYDAY. There was no response, but neither of the flight crew seemed to notice. They had now realised that they’d never done the After Take-Off Checks after the Go Around at Newcastle and went through the checks, including resetting the pressure and descending to FL100.

After a further discussion about the flaps, the crew agreed that they should be able to land normally with Flap 30 but they would slow up early just in case.

They were unsure whether there’d been a flap overspeed or not and were perplexed as to why the automatic systems had not worked as expected.

Scottish Control did not realise the aircraft was on frequency until six minutes later, when the First Officer called again to request direct routing to Manchester.

The flight was given clearance for a direct 10-nautical-mile final into Runway 23R at Manchester. The Captain commented that they needed to do something about the fuel, over fifteen minutes after the low fuel caution for the right tank. This was the first reference in the cockpit to a fuel imbalance.

The First Officer didn’t respond, as at that moment Air Traffic Control gave them the weather at Manchester airport followed by the descent clearance.

After the call, the Captain asked for the fuel to be balanced. Investigators believe there was an imbalance of close to 800 kg by this time. The First Officer opened the fuel crossfeed and turned off the right fuel pumps without referring to the Low Fuel checklist. Neither seemed concerned about their fuel consumption.

It seems that as the flight crew had already accepted that they were landing in a low fuel situation, the warnings were treated as expected consequences of the solution. But if at least they’d referred to the Fuel Configuration checklist at that point, as per standard operating procedure, it would have referred the crew to the Low Fuel checklist and they might have paid more attention to the fuel levels in the right tank.

The aircraft started its descent. Ten nautical miles from touchdown, the fuel crossfeed was closed and the fuel pumps turned back on.

Following the Low Fuel checklist would have meant that the crossfeed was left open with all pumps on until landing. Instead, the crossfeed was only open for eleven minutes. As the thrust was at minimum for most of those eleven minutes, there was not enough time to balance the tank levels.

By this time, the Captain had realised that their fuel levels were critical. “We’re committed to land now, we have to land,” he said, and then later, “We don’t want to go around. We can’t.”

The First Officer acknowledged the situation. Normally, the crew would have discussed the Flight Crew Training Manual notes regarding an approach and landing with a low fuel warning. At the very least, they should have discussed the possibility of a further go around, rather than just dismissing the possibility.

Manchester Air Traffic Control should have been told that their fuel situation was critical. Nothing was said after the initial request for direct routing due to low fuel.

From the Thomas Cook internal investigation into the situation:

An important point here is that both crew felt so much better about the situation after the decision was made, it made them reluctant to question it further (if unconsciously). The choice to go to Manchester ‘felt’ very good and this affect probably duped the crew into a false sense that the choice was better than it was in reality, and stopped them reviewing or scrutinising it.

It is probable that the criticality of the fuel situation was never properly realised for a number of reasons; partly due to being consumed with a reflection on earlier mistakes, partly due to a reticence to discuss further problems during the flight (and therefore a tacit reassurance from each other), and partly due to unfamiliarity around diverting and what to expect. However the main reason is probably that the crew viewed the fuel state as being planned as part of the decision to divert…….Because below-minimum fuel was part of that ‘very good’ decision, and the fuel state progressed ‘as planned’ in line with that ‘very good’ decision, the actual criticality of the fuel situation did not make the impact upon the crew that it might have done. This even applied to the EICAS message and failure to run the low fuel QRH.

There’s a happy ending to this one. At 16:49, the aircraft landed safely on flap 30 and taxied to the stand.

There were only 200 kilograms of fuel in the right tank. With the crossfeed valves closed, the right engine was dangerously close to flaming out and certainly would have if they’d been asked to go around.

The day was over for the flight crew. The Captain made a note in the technical log that they were unable to select a speed in the speed window after the go around. He also noted that the LE Slat Asymmetry and Flaps Disagree warnings had been displayed. He did not isolate the cockpit voice recorder or preserve the flight data recorder data although he later stated that he was aware that it was a serious incident. He didn’t debrief the First Officer or review the situation with the crew before dispersing. He didn’t fill in his report immediately as he was in the habit of leaving them for a couple of days. He did attempt to contact the Duty Flight Operations Manager but failed.

On the way home, he realised that he hadn’t told the engineers about the possibility of a flap overspeed event. He phoned in and it was added to the technical log.

The engineers analysed the flight data and discovered that the flap 1 speed limit had been exceeded by 46 knots. Thomas Cook started an internal investigation as the details began to come clear. The day after that, they reported the flight to the AAIB who began their own investigation immediately.

The internal investigation included the following report from the Captain:

He remembered that he called “go around”, but did not state “flaps 20” and that he advanced the thrust levers. He knew that he needed to do something with his thumb, but instead of pressing the Go Around switch, he said he must have disconnected the autothrottle.

The AAIB computed the minimum landing distance for the 757 as 1,455 metres for a flapless landing. If you add a safety margin of 15% in case of technical emergency, that’s a total landing distance required of 1,685 metres. Newcastle’s runway is 2,125 metres.

What should have been a straight-forward go around at Newcastle Airport went very wrong as a dozen small issues cascaded into an avalanche. The niggling feeling that he needed to do something with his thumb led him to disconnect the autothrottle rather than hit the Go Around switch, meaning that he had to advance the thrust levers manually. Because the G/A switch wasn’t selected, the autopilot had to be disconnected in order for the aircraft to climb. And so it went on: a simple mistake in the correct sequence of pressing buttons came damn close to risking fuel exhaustion in the right engine.

Thomas Cook have adjusted their training for go arounds to include the advice that the flight crew need to take their time and discuss their intended actions, and if necessary to re-engage the autopilot first. Obviously it needed to be said.

This incident is especially interesting because unlike many recent go-around incidents, this was not a case of the pilots being unable to hand-fly the plane. On the contrary, the Captain was clearly able to go around and return into the circuit under manual control, despite the Flight Director working against him. He then continued to hand-fly and navigate the Boeing 757 to the first waypoint en route to Manchester. In this case, the combined lack of knowledge of the flight crew regarding the automatic systems in the aircraft and an inexplicable lack of adherence to checklists caused them to get into such a muddle that they became totally unable to fly the plane safely.


For more like this, pick up the first book in my series, Why Planes Crash. Why Planes Crash: Casenotes 2001 covers eleven incidents and accidents in detail from all over the world in 2001.

21 November 2014

The Story of Diamond Jack Palmer and the Pelikaan

The story of Diamond Jack Palmer is a typically Australian story of a beach comber whose luck was in when he found diamonds worth a few million on the beach but couldn’t quite keep up with his luck.

It’s also a fascinating aviation story.

It starts with the Koninklijke Nederlandsch-Indische Luchtvaart Maatschappij airline and their Dutch Dakota DC-3 registration PK-AFV, known as Pelikaan.

KNILM logofrom the personal collection of Jorge González

KNILM (the Royal Dutch Indies Airways) was founded in 1928 and headquartered in Amsterdam. They initially offered services from Batavia (now Jakarta) to Bandung and Semarang. The airline rapidly expanded and, in 1930, they offered their first international flight connecting to Singapore. In 1938 they started operations in Sydney, Australia.

When the Japanese invaded the Dutch East Indies (now Indonesia), the airline evacuated all the aircraft it could to Australia.

Ivan Vasilyevich Smirnov was a Russian WWI flying ace who returned to military flying as a captain in the army aviation corps in Indonesia after the attack at Pearl Harbor. He was asked to evacuate the Pelikaan with two crew and nine passengers fleeing Java. They left just in time: the Japanese took the Bandung area three days later.

In the early hours of the morning, shortly before take-off, the Bandung airport manager handed Captain Smirnov a cigar-box shaped packaged wrapped in brown paper. Smirnov was told to hand the package to a representative of the Commonwealth Bank once he reached Australia.

The package contained diamonds which were later said to be valued somewhere between 3 million and 10 million pounds sterling in today’s money (4 million to 17 million US dollars). Ivan Smirnov claimed that he was did not know what was in the package. He and his fleeing passengers departed Bandung normally.

As the aircraft skirted the Kimberley coast of Western Australia, about 80 kilometres from its destination, Smirnov saw smoke over the town of Broome, which was under attack by nine Japanese Zeros. Japanese fighter ace Lt Zenjiro Miyano spotted the Dakota and led three Zeros to attack.

Mitsubishi A6M3 Zero (Commemorative Air Force / American Airpower Heritage Flying Museum)

The Zeros attacked the defenseless Dakota, firing at its port side. The port engine caught fire. Smirnov was badly wounded but managed to put the aircraft into a deep spiral dive.

His only option was to crash land on the beach. The right tyre exploded forcing the aircraft to veer to the right and into the water, which extinguished the fire in the port engine. The Dakota sank into the sand and swung into the surf which was at high tide.

The Zeros dived to strafe the Dakota again and they scrambled out of the plane to find protection on the beach. Four passengers were killed by the Zeros. Smirnov was badly wounded and sent one of the uninjured passengers to the aircraft to recover the cargo. The passenger picked up the post, the log book and the brown paper wrapped package but then he was hit by a wave and dropped the goods. He recovered the log book and the post but could not find the package.

The following day, while the survivors were waiting for a rescue party, a Japanese Kawanishi H6K dropped four bombs but did not cause any further damage.

Five days later, the survivors were rescued. The representative from the Commonwealth Bank came specifically for the package and Captain Smirnov had to tell him it was lost. The story of the diamonds spread like wildfire, although Smirnov said he never knew what was in the package, only that it was valuable.

It didn’t take long for local man Jack Palmer head to the wreckage to salvage what he could. He and “two Aborigines” collected what they could find. Apparently, he found the cigar box and tipped the largest diamonds into “aluminum cups” which he hid and wrapped the rest in a rag. He showed them to Frank Robinson and James Mulgrue, who were waiting nearby on a motorboat. He’s said to have told them, “Take a handful for each of yourself and don’t tell anyone.”

Investigating party standing in front of crashed Netherlands East Indies KLM Dakota DC-3 passenger transport PK-AFV ‘Pelikaan’ at Carnot Bay, Lieutenant Laurie O’Neil (second from left), ‘Diamond’ Jack Palmer (third from left) and Warrant Officer Gus Clinch (fourth from left), Western Australia, March 1942

What’s definitely known is that the three of them were at the aircraft wreck and that afterwards, Palmer was seen around town spending money and bragging that he no longer had to work, only to sit and smoke cigars. He later handed over two salt-cellars of diamonds to the authorities.

From the Advocate, an Australian newspaper, in a short piece published 4th May 1942:

BROOME, Sunday.-The discovery by a beach comber of £300,000 worth of diamonds on a remote north-western beach has been revealed.
Addressed to the Commonwealth Bank, the diamonds were handed in a parcel to Captain Smernof, Dutch pilot of one of the last planes to leave Java after its capture by the Japanese.

The plane was shot down by Japanese raiders returning from their first raid on Broome early in March, and crashed into four feet of water in Carnot Bay, 60 miles north of Broome. Of the complement of 12, four died of injuries and were buried in the sand hills near the lonely beach. The others were discovered by natives and rescued, but when a search of the plane was made the diamonds could not be found. Later officials made another search, but without success, and the Dutch authorities then despatched a special officer to investigate.

Two days later, Jack Palmer, middle-aged and ill clad, arrived on his way to enlist. He said he had given up his occupation of beach comber, and had abandoned his lugger. Then, producing a pair of large salt and pepper shakers, he poured out on an official’s desk a glittering stream of diamonds. He had found them in a sodden parcel partly embedded in tidal mud near the beach of Carnot Bay. The diamonds are now safe in the Perth Commonwealth Bank.

Palmer was immediately taken into custody for interrogation. He claimed that was all he had and that the package had broken apart with most of the diamonds falling into the sea.

More diamonds showed up in the area, presumably stashed or spent by Palmer, but the total amount recovered was just over 10% of the original shipment.

“Diamond Jack Palmer” and the two men who met him on the motorboat were tried for the theft of the diamonds in 1943. The two accomplices were acquitted as it was determined that no theft had been committed by them. Palmer had handed over two salt-cellars of diamonds to the authorities and although the majority of the diamonds were still missing, the investigation was unable to prove that he had stolen the rest.

The remains of the Dakota remained on the beach until 1970, when the stripped fuselage was broken up by dynamite. The leading edge of one of the wings is apparently all that remains now.

In an interesting addendum, in 1989 a veteran named Norman Keys wrote about his recollections of the crash near Broome.

About the Broome 1942 exhibition

Excerpt from a letter written by Norman Keys dated 29 September 1989. Australian War Memorial PR90/030

After a few days on the beach when the woman and her child and some of the crew were buried, one of the survivors when searching for water was found by one of the local natives who took the rest of the survivors to a dutch [sic] mission station about fifty miles from the beach the plane had landed on. The message got through to Broome 300 miles south and that’s where I entered the story with a trip in a utility to pick them up.

When I arrived at the Beagle Bay Mission the four survivors were in a pretty bad way and the Captain Smirnoff appeared to me to be delirious and kept repeating that he had to get back to the aircraft to pick up the diamonds. For a brief period we considered going back to the aircraft with some native guides but it was decided that we had to get the survivors to hospital in Broome as soon as possible and so began the worst 300 miles trip of my life with my passengers cursing every bump. I never really believed the existence of the diamonds until some time later it was reported in the paper that a beachcomber had come across the plane and found some diamonds and was handing them out to the natives as favours and later in Broome was freely displaying them. It turned out that there was a fortune in Dutch diamonds being evacuated from Java to the bank in Melbourne. There were court cases following the discovery of the diamonds but the bulk of the shipment has never been discovered and the belief is that they are still buried somewhere in N.W. Australia.

The interesting thing is that this is the first reference that Captain Smirnov may have known about his cargo of diamonds. After the crash, he had consistently stated that he never knew what was in the package, only that he needed to deliver it. Based on Norman Keys’ account, he may have known exactly what he was carrying but unable to do anything about it.

The remaining diamonds were never recovered.

12 November 2014

Crash on Go-Around: Russian Video

This video is harrowing to watch but it’s the most classic example of a stall in the circuit I think I’ve ever seen. The dash cam on this microlight is recording a go-around and crash at a small airfield near Moscow. It was featured in Life News at which point the video began to go viral. The original article is here: Авиакатастрофа под Владимиром попала на запись видеорегистратора – Первый по срочным новостям.

The aircraft was an Evektor Harmony, a light sports aircraft which weighs just 311 kilos empty (686 pounds). The aircraft’s stall speed at VS1 is 45 knots and at VS0 with full flaps it is 40 knots. It’s unclear in the video what the configuration of the aircraft is.

In the left seat is a student pilot and in the right seat is his instructor, who died in the crash. The Life News article refers to the instructor as the pilot but I suspect this is based on being in charge rather than a reference to who was Pilot Flying. It certainly does not look like there was ever a clear decision as to who was in control of the aircraft. There is no official information on the accident yet.

The video begins with what looks like a standard touch and go with some crosswind. The student pilot on the left has the stick, the instructor has the power. It seems to me like the student is looking at the instructor for reassurance and the instructor pulls back on the power, possibly because he couldn’t see how close to the trees they were? The student pulls back instinctively, pulling them right into a stall. Then there’s that awful slip to the left and its all over.

If you were shouting RIGHT RUDDER at the screen while watching this video, you are not alone, as you can see from the commentary on /r/flying on Reddit:

Apparently, photographs from the wreckage show that the flaps were down which might explain why they were climbing away so slowly.

It’s hard to understand what exactly happened or how they managed to do so much wrong on what should have been a simple missed approach.

An investigation is in progress.

07 November 2014

Captain Fired After Nose-Wheel Landing

The Captain of a Boeing 737-700 landed hard at LaGuardia Airport, collapsing the nose gear. But it’s actually what happened leading up to the hard landing that makes this particular case interesting. The final report has not been released; however various public documents, including the Chariman’s factual reports, are now available on the NTSB site:

Accident ID DCA13FA131 Mode Aviation occurred on July 22, 2013 in Flushing, NY United States Last Modified on October 28, 2014 09:10 Public Released on October 28, 2014 08:10 Total 30 document items

Southwest Airlines flight 345 on 22 July 2013 was a scheduled passenger service from Nashville International Airport in Tennessee to LaGuardia Airport in New York carrying 145 passengers and 5 crew. The Captain started her sequence of trips on the 21st of July and the First Officer began his on the 19th. They met up on the morning of the 22nd at Los Angeles International. They had not previously flown together. They flew into Nashville International Airport, arriving at noon, and changed aircraft to the Boeing 737-700. The Captain invited the First Officer to do the next leg as the Pilot Flying and the Captain would take the role of Pilot Monitoring. An American Airlines pilot was in the jumpseat of the cockpit for the trip to New York.

The American Airlines pilot in the jump seat described it as a normal flight.

Once the flight was airborne, both accident crewmembers were very personable. They talked shop and he did not see any issues personality-wise. The captain occasionally gave the accident F/O guidance and he would say ok. The jumpseat occupant did not see any issues in that regard. He thought the accident F/O might be new, based on how the captain was guiding him. The accident F/O made small procedural errors like one time forgetting to push the LNAV right away. During the descent, the captain was giving the accident F/O small instruction tips.

The initial flight was uneventful until they drew close to LaGuardia Airport. There was significant weather in the area and some thunderstorm activity. While they were holding because of the weather, the First Officer briefed a visual approach to Runway 4 backed up with the ILS to Runway 4. They computed the landing distances for the wet runway and the Onboard Performance Computer bracketed out Autobrakes 2, which means that the 2 setting for autobrakes would be not enough for the circumstances. They chose setting 3 for the Autobrakes. During the briefing, the Captain asked if the First Officer wanted Flaps 40. The First Officer agreed, “Yeah, since it’s wet and stuff. Yup.”

The Captain also mentioned that tailwinds on arrival were reaching as high as 30 knots. It’s clear at this point that she was concerned about their landing distance at LaGuardia.

The first officer said that about 98% of the time, he had landed with a 30º flap setting, but he estimated that he had landed with 40º flaps about 30-50 times during the previous year-and-a-half. He stated that a pilot had to be “on his game” with a 40º flap landing, since the airplane had more drag, it required a higher power setting, and a pilot needed to keep a better check of airspeed, because it was quick to decrease. He characterized a 40º flap landing as a power on landing without the pilot reducing power until the airplane was established in the flare with the main gear about 3-4 feet above the runway.

Of note is his description of a 40º flap landing as a power on landing: that is, one flies the aircraft to the ground as opposed to gliding it. The power is only reduced at the very last moment.

The American Airlines pilot in the jump seat barely recalled the conversation.

He remembered a discussion earlier in the flight between the crewmembers that the captain had only been to LGA once before and the F/O had been there a few times. There was a little discussion about going into LGA, but he did not recall much. He thought there was a concern about the length of the runway and the water. He did not remember a discussion about not being fast or high on the approach. He was not paying that close attention.

They were still almost an hour away from landing. There were thunderstorms and clouds between them at the airport; however LaGuardia airport itself appeared to be clear and the aircraft landing before them reported no turbulence on approach.

They broke out of the cloud at about 2,000 feet as they were passed to Tower. The flight crew completed the before landing checklist. The Tower Controller at LaGuardia cleared the aircraft to land.

Up until then, both crew members characterised their cockpit interactions and CRM as good. But as they descended towards the airport, it started to break down.

Interviews with SWA management and training personnel, indicate that the correct protocol would be that when the autopilot was engaged, the PF would be responsible for manipulating the FMC or commanding the PM to do so. The PF would also command a flap setting, which the PM would accomplish. It would not be normal procedure for the PM to manipulate the FMC, flaps, or gear without being asked or commanded.

The First Officer’s recollection was that during the original briefing, the Captain made the decision to use Flaps 40 as she was concerned about the landing distance with the runway being wet. He agreed.

He described her as wanting to be in control. On the approach, he noticed that as he was slowing from 250 knots to approach speed, she started spinning the Mode Control Panel dials without him asking her to set his speeds. As he was about to call for a speed, he found she was ahead of him and already dialling it in.

Under normal circumstances, the Pilot Flying would either set the speeds himself or request that the Pilot Monitoring did it. The First Officer said that it happened that a Captain would say “Hey, I’m going to do this for you” and he would say OK. However, he did not recall the Captain asking or saying anything until after she’d made the changes.

The Captain remembers looking out the window and thinking that the pitch angle did not look good. She realised that they did not have flaps 40 set as per the briefing, which means their performance calculations were wrong. The First Officer, as Pilot Flying, had forgotten and only called for the flaps to be taken as far as 30º.

As Pilot Monitoring, it is her responsibility to notify the pilot flying of anything she notices. However, she should not make changes to the configuration of the aircraft: it is the Pilot Flying’s job to request or make changes.

When they hit the final approach fix, the aircraft was configured for landing with the gear down, flaps 30 and speed brakes armed. The next important phase of the approach was the aircraft reaching 1,000 feet above ground level. The aircraft was on autopilot with the First Officer keeping his hands lightly on the controls ready to take over.

The 1,000 foot call-out is important because the aircraft must be fully configured for landing at this point. If the aircraft is not yet completely configured, the correct response is to break off the approach and go around.

In her interview, the Captain said that she informed the First Officer that the flaps were set to 30 and she was going to set them to 40 and that the First Officer confirmed this. The First Officer’s recollection was that she simply changed the setting and told him afterwards. He was not sure if this happened before or after the 1,000 foot call out although he did know that no further configuration changes should happen after that time.

The cockpit voice recorder has the exchange.

17:43:03 First Officer A thousand feet. Thirty six and sinking six hundred.
17:43:06 Captain Thousand feet.
17:43:11 Cockpit Area Microphone [sound similar to trim]
17:43:30 Captain Oh, we’re forty
17:43:31 First Officer Oh there you go
17:43:32 Cockpit Area Microphone [sound similar to flap handle movement]
17:43:34 Captain That was like an hour and a half ago that we briefed that. I’m sorry
17:43:36 First Officer [sounds of laughter]
17:43:37 Captain All the sudden I started looking at that runway going ‘something’s wrong.’
17:43:39 First Officer Okay.
17:43:40 Captain Okay flaps are at forty.
17:43:41 First Officer Forty, we got it. Green light.
17:43:42 Captain Green light.

The captain said that when she realized that the flaps were not set to 40º, she was pretty certain that they were on the glideslope. She did not recall at what altitude the flaps were set to 40º but it was a “good time” prior to the 500 foot call out. She said she did not remember if they were below 1,000 feet when the flaps were set to 40º, but the flaps should have been down by then. Later in the interview, she stated that “the call for flaps 40 was made with plenty of time before the 500 foot callout. By the book, it would have been a go around.”

The Captain watched the landing through the HUD, which means she was watching the aircraft on the glideslope of the ILS. The Pilot Flying was flying a visual approach and his reference for this was the PAPI.

The Precision Approach Path Indicator (PAPI) is a visual display which provides vertical guidance for the approach path. In a normal approach, the PAPI would show two whites and two reds. More whites means that the angle of the approach is too high. More reds than white means that the angle of the approach is too low.

At around 500 feet, the First Officer disconnected the autopilot and autothrottles. The PAPI indicated two whites and two reds and he was satisfied with his airspeed and crosswind corrections. As far as he was concerned, everything was fine.

The Captain was watching through the Heads Up Display which gave her additional information, including wind.

The first officer said that out of the corner of his eye he noticed that the captain appeared to be somewhat uncomfortable with the approach. As they crossed over the runway overrun, he noticed that the PAPI indicated 3 white lights and one red, which meant that they were a little high on the glidepath. He knew that he would need to make a slight correction to land in the touchdown zone. He said that he then felt the captain’s handon top of his on the throttles, and she pulled his hand and the throttles back retarding the throttles to what felt like the idle position.

He said that he did not recall her making any comments, before, or during her retarding the throttles. The first officer said that he had never had a captain put his/her hand over his on the throttles during an approach, although some captains would guard the throttles by placing their hand below his behind the throttle levers. He said he never had a captain pull the throttles back on him while he was flying an approach.

As the First Officer continued his final approach, the PAPI shifted from two reds and two whites to three whites and a red, thus signalling that the aircraft was slightly high. The Captain, watching from the Heads Up Display, said that she believed that the aircraft was going too fast and that the pitch was too low.

She said it felt as though they were being pushed over the ground. She said that over the threshold, she verbalized that they had to get the airplane down, and she put her hand over the first officer’s hand on the throttle, but was not touching his hand. She said there was no standard procedure for that, but was certain that it was explained as a technique. She said she had verbalized that they had to get the airplane down on the ground, but she did not get the reaction she needed from the first officer, and did not believe she had time to try to articulate it again. She said she believed that if she did not act, the airplane would have continued to float past the touchdown zone.

Another relevant point is that the Captain had been watching the approach on the Heads Up Display. The Jeppesen approach plate (11-1) for ILS Runway 4, states that the VGSI [PAPI] and ILS glidepath are not coincident. This means that even coming down perfectly on the PAPI, the aircraft could show as high on the ILS glideslope. The NTSB have so far makes no comment as to whether this may have led the Captain to overreact as the approach appeared higher than it was.

Regardless, it is quite clear from the data that at the runway threshold, both the glideslope deviation and the PAPI visual guidance indicated that the aircraft was high.

From the transcript of the Cockpit Voice Recorder

17:44:00 Captain Clear to land.
17:44:07 Captain Correcting nicely. Don’t get too much on the speed.
17:44:12 Captain Ooh.
17:44:12 First Officer Come on.
17:44:14 Captain One hundred. Gotta get [unintelligible]
17:44:17 Captain Get down. Get down. Get down. Get down.
17:44:23 Captain I got it.
17:44:23 First Officer Okay you got it.
17:44:26 Captain [sound similar to inhalation]
17:44:26 Captain [expletive]
17:44:26 Cockpit Area Microphone [sound of impact]

The two things that jump out at me here are that her phrasing is not clear and non-standard (most significantly, “I got it” rather than “I have control” when she is taking control of the aircraft. The second is that if the approach was not stabilised: she should have called for the first officer to go around, rather than try to correct the issue and take control at low level.

The American Airlines pilot in the jump seat was unable to say much about the final moments.

The airplane was low; he was thinking they were low and the nose still looked low. He was not
familiar with the airplane and was seated in the jumpseat, but it did not look right. He thought the altitude was in the 150-200 foot range. There was a 2-4 second delay after the throttles went to idle and then the captain said my aircraft and the accident F/O lifted his hands up in the air. He did not notice what the F/O did when the captain pulled the throttles to idle.

The jumpseat occupant was concerned about the pitch being low so he was looking outside the airplane. After the transfer of control, he seemed to recall a pitch down at that point. The airplane pitched over further down. He became tunnel visioned on the cement and he did not look back inside. The ground was coming up quicker than he thought it should have.

The First Officer said that he acknowledged and released control of the aircraft and then scanned the altimeter and airspeed. He looked out at the rapidly approaching runway and said that all he could think to do was brace for impact. There was no time to say anything.

The Captain may have let the nose wheel drop drying to catch the ILS glideslope and by the time she realised, it was too late for a correction.

The captain said that she saw the nose hit the runway, and felt the impact of the nose hitting, but did not feel the nose wheel hit, and had no recollection of which gear hit first. She said it was a hard impact, and the airplane started sliding. She said she tried to control the airplane with rudder and brakes. The airplane veered slightly to the right before stopping on the runway.

Asked his impression of what section of the airplane touched down first, [the American Airlines pilot in the jumpseat] said the nose wheel first. He did not remember how far down the runway they touched down. He did not recall any markings on the runway before they touched down. He was looking “at concrete” but he was looked at the centerline. When they did the pitch over when the nose hit, it felt like “one big jarring moment” and then the nose was on the ground. He did not feel an arresting sensation like the nose wheel touched first and then collapsed. The nose was on the ground and they were sliding and he thought a panel or 2 became dislodged in the cockpit. After a few seconds, smoke entered the cockpit from underneath the floor boards and around the pedestal.

Boeing have submitted their report based on the Flight Data Recorder:

The FDR data show the airplane configured for a flaps 40 approach with the autopilot and autothrottle engaged, and on glideslope and localizer at 500 feet Radio Altitude (RA). The autopilot and autothrottle were disengaged at approximately 410 feet RA. As the approach continued, the airplane began deviating above the glide path due to increased thrust and a slight increase in pitch attitude while maintaining the selected speed of VREF40+6. At the runway threshold, the airplane was at 60 feet RA and on a 2.1-degree glide path. The throttles were reduced to forward idle at 46 feet RA, and at 32 feet RA the cockpit voice recorder indicated that a transfer of control was made from the First Officer to the Captain. After the transfer, but prior to touchdown, the control column relaxed to neutral deflection, the throttles were advanced.

Due to the early reduction in thrust to forward idle, the absence of control column input prior to touchdown, and the nose-down pitch tendency in ground effects, the airplane pitch attitude decreased to a nose-down attitude of -3.1 degrees and touched down on the nose gear prior to the main gear touching down.

In other words, the Captain pulled the power back because she believed that they were too high. The nose pitched down and as the aircraft touched down on the runway, it landed nose-gear first.

The investigation is still in progress; however the Captain has been already terminated by the airline.

31 October 2014

Fascinating Aviation News

Anna is back from holiday and boy does it show. I’m hard-pressed to compete with the excellent articles that she’s highlighted on the Fear of Landing Facebook page this past week.

I know not all of you use Facebook so I thought I’d share the best posts with you.

My favourite was the news piece about the RAF jet who diverted a Lithuanian cargo plane after it stopped responding to ATC.

RAF Typhoon to cargo plane: “I’m instructed by Her Majesty’s Government of the United Kingdom to warn you if you do not respond immediately to my orders, you will be shot down.”

RAF jets escort Latvian cargo plane causing loud blast in Kent area – Home News – UK – The Independent

To react quickly to the incident, the Typhoons were launched from RAF Coningsby in Lincolnshire and travelled at supersonic speed.

The resulting blast was heard in the Dartford area at around 4.40pm, and resonated in the north-west Kent areas of Sevenoaks, Kemsing, Dartford, Faversham, Maidstone and Tunbridge Wells.

Frightened local residents quickly took to Twitter to speculate whether Kent had been hit by an earthquake or an explosion.

The audio has been posted to Soundcloud by RAF Coningsby Info:

Here’s a few more of Anna’s posts:

And today’s post, especially for Halloween:

If you enjoy Anna’s posts, come on over to Facebook and join us on the page or simply leave a comment here to ask her to post more.

24 October 2014

Dwarves, Orcs and Elves Take Flight with Air New Zealand

Air New Zealand, the official airline of Middle-Earth, have once again taken the world by storm with their safety video. They’ve called it The Most Epic Airline Safety Video Ever and it’s guaranteed to keep passengers’ attention during pre-flight announcements.

Keep your eyes peeled for Frodo, Fili, and Radagast and even director Peter Jackson! Ian McKellen was not available to play Gandalf so instead, film-maker and safety video director Taika Waititi filled in. Apparently his passenger is a well-known baseball player, Naoyuki Shimizu.

As the official airline of Middle-earth, Air New Zealand has gone all out to celebrate the third and final film in The Hobbit Trilogy – The Hobbit: The Battle of the Five Armies. Starring Elijah Wood and Sir Peter Jackson; we’re thrilled to unveil The Most Epic Safety Video Ever Made.

The video was filmed in the Middle-Earth locations of New Zealand over the course of a week. Their first Hobbit safety video had more than twelve million views and the current video The Most Epic Safety Video Ever Made #airnzhobbit has already had over three million views as I write this.

I usually recommend against reading comments on You Tube but this piss-take of searching for symbolism really did make me laugh:

The safety position in case of emergency is designed to break your neck so flight companies wont have to pay you for cure of possible injury for long time, they only will have to pay few bucks to your relatives if you die.

I have proof: the video length was 4:38 which gets rounded to 5, this video was about Lord of the Rings and Lord of the Rings has the Sauron eye, humans have 2 eyes.
5 -2=3 : Triangle has 3 corners
Triangle looks like nose. Humans have one nose which looks like triangle and 2 eyes,
2-1 makes 1 eye
The Illuminati’s symbol is triangle with eye in middle of it! They spoke about illuminated signs, I found them.
AIR NEW ZEALAND ILLUMINATI CONFIRMED?

Maybe not.

Sadly, they’ve said that this is the last of their Hobbit-themed works. The YouTube video will at least help to tide me over until the final Hobbit film comes out in December… although if anyone wants to fund a flight to New Zealand, I’m happy to check the safety video out in person!

17 October 2014

Piper Comanche Full of Arrows

This photograph was sent to me a couple of times with questions of what it might portray and I just had to track it down.

The photograph was first posted to Reddit as This aircraft belongs to a conservation team in The Amazon. Yikes! and then again in September with it’s current headline, The anthropologists decided that this tribe was to remain “uncontacted”. It was the second description that took off, even though in both instances the descriptions was pretty quickly debunked.

The Piper Comanche in the photo is actually part of an art exhibition in Buenos Aires.

Argentina’s new arts district is built “from scratch” – The Art Newspaper

The Cuban artist collective Los Carpinteros is showing three large-scale installations at Buenos Aires’s Faena Arts Centre in May. They have created a new site-specific sculpture especially for the arts centre’s 700 sq ft “Sala Molinos” exhibition space and are also installing two earlier works—a Piper Comanche single-prop plane pierced by arrows and a sprawling shantytown neighbourhood built entirely from corrugated cardboard.

The piece is called Avião. Los Carpinteros say that they produced it as a symbol of modernization: the modern transport contrasting with the wood-and-feather arrows.

It seems likely that the idea came from the Sentinelese, a pre-Neolithic tribe living on the Andaman Islands who are notably hostile to outsiders. In 2006, Sentinelese archers killed two fishermen who strayed into their territory.

Stone Age tribe kills fishermen who strayed on to island – Telegraph

The two men killed, Sunder Raj, 48, and Pandit Tiwari, 52, were fishing illegally for mud crabs off North Sentinel Island, a speck of land in the Andaman and Nicobar Islands archipelago.

Fellow fishermen said they dropped anchor for the night on Jan 25 but fell into a deep sleep, probably helped by large amounts of alcohol.

During the night their anchor, a rock tied to a rope, failed to hold their open-topped boat against the currents and they drifted towards the island.

“As day broke, fellow fishermen say they tried to shout at the men and warn them they were in danger,” said Samir Acharya, the head of the Society for Andaman and Nicobar Ecology, an environmental organisation.

“However they did not respond – they were probably drunk – and the boat drifted into the shallows where they were attacked and killed.”

After the fishermen’s families raised the alarm, the Indian coastguard tried to recover the bodies using a helicopter but was met by the customary hail of arrows.

Avião may also have been inspired by another similar piece which has a very different message.

Borrowing Your Enemy’s Arrows is by Cai Guo-Qiang and on display at the Museum of Modern Art in New York City.

MoMA | The Collection | Cai Guo-Qiang. Borrowing Your Enemy’s Arrows. 1998

The title—which alludes to a text from the third century (known as Sanguozhi)—refers to an episode in which the general Zhuge Liang, facing an imminent attack from the enemy, manages to replenish a depleted store of arrows. According to legend, Zhuge Liang tricked the enemy by sailing across the Yangtze river through the thick mist of early dawn with a surrogate army made of straw, while his soldiers remained behind yelling and beating on drums. Mistaking the pandemonium for a surprise attack, the enemy showered the decoys with volleys of arrows. Thus the general returned triumphantly with a freshly captured store of weapons.

So that’s the story behind the aircraft full of arrows. The only real question is whether the aircraft is still in flyable condition; certainly if they’d used a Piper Arrow instead of the Comanche, one could say it was perfectly arrowdynamic.

I’ll get my coat…