16 January 2015

50/50 Blame for Pilot and Skydiver in Mid-Air Collision

The final report ERA14LA146 was released last month for the incredible collision between an aircraft and a parachutist with only minor injuries (and a totalled Cessna) as a result.

The accident happened at South Lakeland Airport in Florida on the 8th of March 2014. It was a clear day, blue skies and a light 3-5 knot wind. South Lakeland Airport is an uncontrolled grass strip at the edge of Lakeland’s Class D airspace.

The pilot was an 87-year-old WWII veteran who has been flying all his life. He was flying in the circuit and had done three touch-and-go landings on runway 32: touching down on the runway to immediately take off and go again. He was aware that skydiving operations were in progress.

While he was flying, another aircraft with a group of parachutists had departed South Lakeland Airport and climbed to jump altitude. The skydiver in question was the 4th skydiver to jump. He deployed his parachute and manoeuvred to be parallel to the runway. He was watching another skydiver at about the same altitude and then initiated a left-turn so that he would land into the wind. His approach path crossed the approach end of runway 32.

Meanwhile, the pilot called out that his next approach would be for a full-stop landing; he was finished practising for the day.

Robert Goyer of FLYING knows the airfield and wrote about it a few days after the accident.

Insight: Parachute-Cessna 170 Midair Collision | Flying Magazine

The airport is pretty small, and there’s a two-lane highway immediately to the east lined by power lines, which you can see in the photographs. There are tall trees at the departure end of the runway, but with more than 3,000 feet of available runway, the power lines are the greater hazard until after you’ve climbed out initially. On approach to Runway 32, there are high tension lines. It feels as though you’re descending into a funnel with only one place to go. On approach to Runway 32, where the Cessna was doing touch and goes, you can go missed in a emergency by executing a right turn over the airport grounds. Otherwise, once you’re as low as the Cessna was and already rotating for a touch and go, the options are even more limited.

What’s clear is that neither of them had seen the other and both were on their final approaches without any awareness of a conflict.

The Cessna 170 was on short final coming in to land as the skydiver glided across the runway. They were 75 feet above the ground when the pilot saw the skydiver.

“A parachutist dropped down in front of me and was going to land in the center of the approach end of the runway.”

Tim Telford was taking photographs of the skydiver as he was about to touch down and he couldn’t believe what he saw.

The pilot immediately climbed in a desperate attempt to avoid the man who had effectively dropped into his view. However, he wasn’t able to climb over the parachute and his right wing caught the parachute’s suspension lines.

The Cessna pitched up and then down. The skydiver was pulled up into the air like a marionette and then dropped to the ground as the nose of the plane sliced through the strings of his parachute. The aircraft crashed nose-first into the runway.

Unbelievably, both the pilot and the skydiver suffered only minor injuries. They were taken to hospital immediately but suffered only bruises, no broken bones.

The Cessna 170, on the other hand, was a write-off.

The NTSB report categorised the accident as a “collision with terrain/object (non-CFIT)” and “Uncontrolled descent” which I suppose is the closest they have for a mid-air collision of man and plane.

The National Transportation Safety Board determines the probable cause(s) of this accident as follows:
The failure of the pilot and the parachutist to see and avoid each other, which resulted in the airplane’s wing colliding with the parachute’s suspension lines.

The point is that both the pilot and the skydiver were responsibile to “see and avoid” the other traffic in the circuit. The fact that neither of them had a clue that the other one was there means that they were both at fault for the resulting collision.

I’m lucky enough to have never flown into an airfield at the same time as parachutists were dropping. I’ve been a passenger, though, and it’s a case of constant looking out and making sure that you know where the jumpers are and that there’s no chance of getting close to them.

Insight: Parachute-Cessna 170 Midair Collision | Flying Magazine

Even if the high wing of the 170 hadn’t blocked the vision of the pilot — and who looks for parachute traffic on rotation? — there was probably not enough time to get stopped without there being a collision. The pilot, likewise, was surely busy on the arrival over trees and power lines before setting up for the touch and go.

The parachutist likely had few options as well. New chutes are fairly maneuverable compared to old fashioned models, but there’s only so much a chutist could do under the circumstances, especially since he’d just cleared power lines behind him.

It does seem a bit unfair to the pilot, as the skydiver was out of his drop zone and should not have been landing on the active runway. I just think that on short final, you can’t really expect to see someone coming dropping down onto you from above. Your attention is ahead of you, gauging the touchdown point and ensuring that the runway is free of obstructions; I don’t think it would occur to me to be looking up!

The good news is that both pilot and skydiver were fine and said they planned to continue their hobbies despite the scare.

And Tim Telford got the photographs of his life!

09 January 2015

A Drone and the Man who Loves It

I have posted a few times about the dangers of drones but this video shows what can be done with a remote controlled model aircraft. It has everything: suspense, intrigue and action. It’s the touching story between a drone at the edge of its life and the Dutchman who loves it.

Zwier Spanjer got a DJI Phantom 2 for Christmas and spent the day flying it around the local park in the Netherlands. He was having so much fun, he forgot to watch the power.

Just watch:

When the DJI gets low on power, it goes into auto-land mode which is why it is slowly descending. You can see the owner and his friends watching from the street.

Of course, someone has already done a Whitney Houston homage:

I know I complain about reckless usage of these now that they’ve become affordable and popular but I do love the camera footage that comes from them!

02 January 2015

Five Aircraft That Did Not Crash In Thunderstorms

OK, that title is a bit misleading because there are thousands and thousands of aircraft that haven’t crashed in thunderstorms. Even counting only commercial airliners then, according to How many planes and passenger are there in the world? (Livecounter), there are 19,025 of them around the world right now. All of these have not crashed flying through a thunderstorm.

However, there’s a number of aircraft which have flown through thunderstorms and ended up in trouble. Some of them did crash. Others got away with a hard landing. What they have in common is that it wasn’t just the weather. The thunderstorm alone didn’t result in an immediate crash scenario.

Thunderstorms aren’t safe. Aircraft will make great detours in order to avoid flying through one. But in a commercial jet, flying through a thunderstorm doesn’t mean certain death or that the aircraft is going to fall to pieces. A pilot avoids flying through a thunderstorm for three reasons: it’s uncomfortable, it’s unpredictable and it’s a hostile environment for aviation. Aircraft in a thunderstorm are subjected to updrafts, downdrafts, icing, heavy precipitation and lightning, all of which have a level of risk associated with them.

The truth is, flying through a thunderstorm makes the aircraft a hell of a lot more vulnerable. When combined with general risks, such as aircraft structural integrity and human factors, the likelihood of an incident is increased.

Thunderstorm and icing shouldn’t have caused this aircraft to crash

We have to start with the obvious example: Air France flight 447. This has come up a lot when discussing AirAsia flight QZ8501 because there are some core similarities. Both aircraft were flying in thunderstorm conditions. Neither aircraft made a mayday call and in both instances the aircraft simply disappeared from radar. In the case of Air France flight 447, it took a week to find the initial wreckage in the South Atlantic ocean, quite a bit longer than the three days of searching for QZ8501. Finding the black box itself took almost two years but in the shallow waters of the Java Sea, it should be possible to locate the AirAsia black box very quickly: weeks, not years.

Air France flight 447 flew directly through a large system of thunderstorms and the pitot tubes became obstructed by ice crystals. The pitot tubes work as speed sensors and, without this data, the autopilot could not keep control of the aircraft. The aircraft was straight and level: if the flight crew had done nothing at all, the issue would have almost certainly resolved itself in a few minutes. But instead the Pilot Flying pulled the stick back, causing the aircraft to go into a climb and lose speed. The flight crew did not follow the correct procedure for loss of displayed airspeed information and appeared to be very confused by the situation. The confusion in the cockpit lasted until the aircraft crashed. In the most alarming human factors crash of the decade, the Pilot Flying effectively flew the Airbus A330 into the ocean.

Flying too high

Pulkovo Aviation Enterprise Flight 612 was a Tulopev 154 passenger airline which crashed north of Dontesk in 2006. The area was beset by heavy thunderstorms. The flight crew made a mayday call to report that they were experiencing severe turbulence as they approached the storm area. Two minutes later, the aircraft disappeared from radar. However, it was not the turbulence that brought the aircraft down. The flight crew initially tried to outclimb the thunderstorm, hoping to fly over the top, which may have been the same plan as the AirAsia flight had.

That day, it was an impossible task. The thunderstorm front was extremely high, with the clouds peaking out between 40,000 and 50,000 feet. Nevertheless, the flight crew climbed from their cruising altitude of 35,000 feet to their maximum altitude of 39,500 feet. Untrained in flying at high altitudes, they did not appear to have any idea of the risk

The maximum altitude of an aircraft is the highest altitude at which the aircraft can sustain level flight. As they flew through the thunderstorm, they were subjected to a severe updraft which lifted the aircraft to 42,000 feet in a matter of seconds. The angle of attacked increased and the airspeed dropped to zero. The air density was so low that the aircraft was no longer capable of flight. It fell into an unrecoverable spin. This flat spin is where a plane spins on its belly and gains no airspeed. Witnesses on the ground watched the aircraft spin into the ground at low speed but there was not a thing that the pilots could do.

In-flight break up near a storm

There was one incident in Florida where the wings broke off of a single engine aircraft flying in thunderstorm weather in Florida. The Pilatus PC-12 was flying at 26,000 feet when ATC cleared him to deviate right to avoid adverse weather ahead. As the pilot was turning to the right into cloud, the autopilot disengaged.

However, instead of taking control, the pilot ran through a test of the autopilot to see if it was working normally. Meanwhile, the aircraft continued in an uncontrolled turn. While he was testing, the aircraft dropped into a spin.

At 15,000 feet and travelling at about 338 knots, 175 knots above the maximum operating speed of the aircraft, the pilot appears to have finally realised that the aircraft, and not the autopilot, needed his full attention. He pulled back hard on the yoke, trying to yank the aircraft back up to straight and level. He effectively tore his wings off.

Struck by Lightning

In 2003 in Norway, a turboprop was struck by lightning. Generally speaking, lightning has no effect on modern aircraft, however in some instances the aircraft can lose functionality. In this instance, the flight crew were flying to Bodø in a Dornier 228 when they were confronted with a “wall of clouds”. The storm cells were reported as containing heavy precipitation and intense lightning activity.

Another aircraft reported a lightning strike as it was approaching Bodø airport. The Dornier 228 elected to approach from the opposite direction and communicated with Air Traffic Control about the weather and how to avoid the worst of the storms. The aircraft was at 6,000 feet when it entered heavy turbulence and the flight crew commented that the weather radar didn’t seem to be giving correct information. Thirty seconds later, a bolt of lightning hit the baggage door on the nose.

The crew were blinded for about half a minute. When they recovered, they discovered that their elevator, which controls pitch, wasn’t working correctly. By the time that the Captain took control, the aircraft speed had decayed to a stall. The aircraft stopped climbing at 7,800 feet. The flight crew used engine power to increase the airspeed and the aircraft continued its climb to 9,000 feet. The flight crew regained some control of the pitch using the elevator trim and were able to fly the aircraft to Bodø Airport, where they were given clearance to do whatever was needed to get the aircraft onto the ground. On the second attempt, they were able to get the turboprop onto the runway. They landed hard, snapping off the wheels, but there were no injuries.

The investigation found that there was considerable corrosion of the wires in the bonding and that some 30% of the wires may have been damaged previous to the lightning strike. As a result, the aircraft’s bondings couldn’t conduct the electric energy from the lightning and the transfer rod, which connected the elevator to the cockpit, was broken.

Into the Heart of the Storm

In 2002, an aircraft ditched into the river in Indonesia after flying through a severe thunderstorm. Garuda flight 421 was a Boeing 737 on a domestic flight when thunderstorms closed in, leaving the flight crew with nowhere to turn. They encountered severe turbulence and rain and hail clattered against the aircraft. The cockpit voice recording includes the sound of rain hitting the fuselage. The rain and hail is so torrential, it is almost impossible to hear the conversation in the cockpit. The recording was entered into the sound database of the UK Air Accidents Investigation Branch who found that the rain was the heaviest ever recorded on a cockpit recorder. Based on tests, investigators believe that the aircraft encountered hail/water content as high as 18 grams of hail per cubic metre of air. This is the equivalent of flying through 10,000 ice cubes per second.

The hail ingested by the engines was well above the certified levels. The engines both flamed out. The flight crew attempted to relight the engines but as they were still flying through the heavy precipitation, the first attempts didn’t work.

As if the situation wasn’t horrific enough, during the flight crew’s second attempt to relight the engine, the aircraft lost all power. The flight crew couldn’t know it at the time but investigators discovered that there was a fault in the newest cell of the battery: the level of electrolyte in that cells was much lower than the others. This denied the crew any chance of restarting the engines.

In a somewhat miraculous ending to a horrific situation, the captain managed to glide the Boeing 737 onto the Bengawan Solo River, where it came to a halt facing upstream with the nose up and pointing slightly to the right. There was only one fatality on impact, a cabin crew member. The rest of the crew and all of the passengers were rescued with only minor injuries by local villagers.


The point of this is not to strike fear into the hearts of nervous passengers but to try to explain how thunderstorms are dangerous and why pilots and air traffic control will work together to avoid them. Stormy weather rarely ends in disaster for commercial jets. In those instances where it is a contributing factor, we almost always see some other issue: bad training, human error or maintenance issues which are the actual cause of the crash.

So when you hear about thunderstorms ahead, don’t panic. Flying through a thunderstorm doesn’t make an aircraft spontaneously wreck like hitting an iceberg at sea.

26 December 2014

Most Popular Aviation Pieces in 2014

Long dark nights are slowly receding as we pass the winter solstice and head back towards Spring. I can tell you, I’m seriously looking forward to 2015: I have great expectation of fun projects and lots of writing and hopefully even a bit of flying.

This year’s most popular posts are an interesting mix as quite a few of them were not posted this year. They gained belated attention through posts on aviation message boards, Reddit and searches for information, which means some unexpected posts like those in the history category did especially well.

I made one change: I didn’t count posts to do with MH370 and MH17. I feel these were high at the time as we all tried to make sense of the mystery of the disappearing aircraft but they have not been updated since the initial posts and may now hold information that has since been corrected. None of them appears in the top posts of the last few months, that is, there was a spike of interest which has now receded.

(Obligatory pitch: if you are interested in reading more about MH370, then take a look at my book, The Mystery of Malaysia Airlines Flight 370. It does not cover the last few months of search news but the details of the flight and the list of theories regarding the aircraft’s disappearance are completely up-to-date.)

So, here are the posts which were the most popular in 2014!

Number One: The Story Behind an Unbelievable Photograph

I wrote this November 2013 because I loved the photograph and wanted to know how it happened. Clearly, a lot of people have the same question: it has turned out to be my most popular post ever.


Number Two: Boston John

Air Traffic Controller John Melecio, also known as “Boston John,” is one of the most famous ATC controllers today. When he was controlling from Boston Tower, he was always lively and humorous, gathering a following all over the world. Listeners on LiveATC.net posted to the forums whenever he was on air so fans could tune in and hear him live.

When I wrote about John Melecio, I didn’t realise he was quite that famous but two years later, this post is one of the most often linked to from avation groups talking about ATC.


Number Three: FAA Approved?

I found this on an aviation forum and I just can’t stop staring at the photographs.

This is the sixth year in a row that this series of photographs is in my top five posts. I have to admit, I never get tired of looking at his repairs.


Number Four: Overloaded, Overspeed and Out of Fuel

The situation started quietly: a Boeing 757 inbound to Newcastle International Airport (NCL) was asked to do a go around: break off the approach and try again.

The Thomas Cook aircraft was a Boeing 757-237 registration G-TCBC. There were seven crew on board and 235 passengers. The crew was scheduled for an early morning flight from Newcastle to the Canary Islands, landing at Fuerteventura and returning to Newcastle that afternoon. They could expect to be home for suppertime.

At less than a month old, I’m surprised to see this accident report in the top ten, but it is a hard-to-believe incident in which a relatively standard sequence of events almost turned into disaster.


Number Five: Six Exclamations You Never Want to Hear in the Cockpit

“Have You Ever Done a Barrel Roll in the Dark?”

This was a selection of six accidents with wince-worthy cockpit conversations shortly before things went pear-shaped. Most of these are accidents I covered on the site and I thought I’d try a different way of doing a round-up of interesting accidents. It seems to have worked.


Number Six: B-1B with its Nose to the Ground

On the 5th of October in 1989, a B-1B Lancer departed Dyess Air Force Base with four crew on a routine training flight. Three hours later, the flight crew discovered that the aircraft had a hydraulics fault. As they came in to land at Dyess Air Force Base in Texas, the front landing gear failed to lower. They circled the airfield for four hours, twice being refuelled by an airborne tanker, as they struggled to lower the nose wheel. Supporting the crew on the ground were military personal and mechanics for the aircraft manufacturer; however they were unable to resolve the issue.

The video of this landing was released last year and clearly you all found it as fascinating as I did.


Number Seven: A Fun Set of Videos for the Weekend

These are all good-hearted aviation videos which are being passed around that I thought you might enjoy. Surely you can’t have already seen them all!

All I can say is you all must have been seriously bored that weekend…


Number Eight: Pilot Suicides: Fact vs Fiction

One of the claims by Ewan Wilson which is making headlines is that he “found” five flights which he believes were also caused by suicidal pilots.

To clarify, to “find” these cases, you just need to go to the Aviation Safety Network, where there is a list of aircraft accidents caused by pilot suicide. ASN lists nine cases there but Wilson is clearly talking about commercial pilots carrying passengers. That leaves us with five cases, all totally documented.

Each of these five commercial pilots flying a scheduled passenger service is believed (by some investigating bodies, although not all) to have committed suicide, taking their aircraft and their passengers with them: an especially horrifying type of mass murder.

A straight-forward look at five possible pilot suicides in commercial aircraft, in the context of what might have happened to Malaysia Airlines flight 370. The hardest part of writing this piece was keeping it short; I could have written so much more detail on any one of the five flights.


Number Nine: Captain Fired After Nose-Wheel Landing

Another relevant point is that the Captain had been watching the approach on the Heads Up Display. The Jeppesen approach plate (11-1) for ILS Runway 4, states that the VGSI [PAPI] and ILS glidepath are not coincident. This means that even coming down perfectly on the PAPI, the aircraft could show as high on the ILS glideslope. The NTSB have so far makes no comment as to whether this may have led the Captain to overreact as the approach appeared higher than it was.

This is an unusual case where the Captain took control of the aircraft at the very last moment and caused the aircraft to land hard on the nose wheel. I wrote this up based on the preliminary reports and am interested to see if the final report offers any further information.


Number Ten: Near Miss at Barcelona

Last week, a plane spotter named Miguel Angel was filming flights coming into Barcelona airport when he captured this video. Five days later, that video has had over 20 million views.

The final report on this incident is still not out, which is a shame. I’d love to know how it happened.


And that’s the top ten posts that you all enjoyed en masse in 2014. If you have a personal favourite post, please tell me in the comments!

Meanwhile, Anna’s busy putting together a set of her favourite aviation pieces from 2014 on Facebook. Keep an eye out for that here: Fear of Landing on Facebook

I hope we have a lot more interesting aviation news and analysis for you in 2015!

19 December 2014

Near Miss with Drone at Heathrow

Last week, an Airprox Report was released regarding an incident in Heathrow airspace. An airprox is the term for a situation where the pilot or air traffic controllers believe that the distance between aircraft (taking into account relative positions and speed) are such that the safety of the aircraft involved may have been compromised.

FAQ Details | UK Airprox Board

If a pilot or controller is of the opinion that the distance between aircraft as well as their relative positions and speed was such that the safety of the aircraft involved was or may have been compromised then he or she may report an Airprox. In Airprox 016/2002 for example, the separation recorded on radar between the two aircraft was 400ft vertically and 3 miles horizontally: this is hardly a ‘near miss’ in the way people generally use these words. In the judgement of the air traffic controllers who reported the event it was an Airprox and was therefore fully investigated and assessed by the Airprox Board.

This particular airprox report is interesting because it involves a British Airways passenger plane and an a unmanned aircraft.

On the 22nd of July 2014, an Airbus 320 was on short final to land at Runway 09 Left at Heathrow. The weather was clear and the visibility was good. The pilot saw a small black object as the aircraft descended past 700 feet. He described it as a small radio-controlled helicopter and said that it passed about 20 feet over his left wing.

The model helicopter did not strike the aircraft and there was no further issue, however as the report notes, it was a serious distraction at a critical level of flight. The pilot reported it immediately to Heathrow Tower who warned inbound aircraft of the unidentified object but no further sightings were made.

At 700 feet, it seems likely that the “helicopter” was a multi-rotor aircraft using GPS, which can easily be bought in any enthusiast shop.

The Airprox Board worked with the local model-flying-club but were not able to identify the unmanned aircraft nor trace the operator.

AIRPROX REPORT No 2014117

The Board members were satisfied that the A320 crew had seen a model helicopter and were of the unanimous opinion that the operator of the model had chosen to fly it in an entirely inappropriate location. That the dangers associated with flying such a model in close proximity to a Commercial Air Transport aircraft in the final stages of landing were not self-evident was a cause for considerable concern.

A spokesman for the CAA told the BBC that the CAA had to depend on people using their common sense when they operated drones.

It seems odd to even have to point that out, but a similar event at Stockholm resulted in the operator of a drone blissfully unaware that he’d just shut down the airport.

That was just last week, when Stockholm-Bromma Airport had reports of a drone in the local area. The Swedish CAA closed the Bromma CTR for all traffic below 2000 feet which stopped all flights going into and out of the airport.

An hour later they found the man operating the drone. He was documenting the construction of a motorway and had no idea about airspace or that there were any restrictions on where he could fly his drone.

A powerful drone bought on the high street will weigh 7-10 kilograms; large enough to cause real danger to commercial aircraft. The U.S. Air Traffic Controllers Association (NATCA) has stated that reports of drones flying dangerously close to passenger aircraft is becoming a daily occurrence. The fact that they are flown at low altitudes mean that they are often interfering with aircraft on final approach, as in the Heathrow incident.

In the UK, an unmanned aircraft must remain within the line of sight of the person operating it and must not be flown within 150 metres (492 feet) of a congested area or large group of people. In the US, they may not be flown above 400 feet. Both countries have an exclusion zone around commercial airports where no unmanned aircraft can be flown without ATC permission.

Having seen the issue with lasers over the past few years, however, I suspect the issues with hobbyist drones at airports has only just begun.

12 December 2014

Plane vs Truck

This photograph is so remarkably perfectly timed, I thought it must be a still from an action movie or television series, done with special effects.

It turns out it’s absolutely a case of impeccable photography by Mr Robert W Madden, who was at the right place at the right time and managed to frame the shot perfectly.

It was taken in Guatemala in the aftermath of a magnitude 7.5 earthquake which struck Guatemala City on the 4th of February 1976.

Earthquake rocks Guatemala City — History.com This Day in History — 2/4/1976

It was 3:04 a.m. when the first large tremor, centered six miles under the Earth’s surface 120 miles northwest of Guatemala City, struck. The quake was the result of a clash between the Caribbean and North American plates on the Motagua Fault. In a matter of minutes, about one third of the city was destroyed. All over the city, sleeping residents were crushed and killed when their weak adobe homes collapsed on top of them.

Immediately, efforts began to rescue the thousands of people buried beneath the rubble. Many people could not be saved, as it was extremely difficult to get help to the city. The roads and bridges leading to Guatemala City had been extensively damaged. Thousands of those people lucky enough to be pulled out alive suffered broken backs and pelvises. It is estimated that more than 70,000 people suffered serious injuries. The U.S. Air Force assisted by airlifting food and medicine into the area. With all the available hospitals filled beyond capacity, the United States also set up a field hospital in Chimaltenango. The number of deceased overwhelmed the authorities, so communal grave sites had to be established. To make matters worse, strong aftershocks followed for an entire week, terrorizing the survivors, who were staying in improvised shelters.

Bob Madden worked for National Geographic magazine and was in Guatemala covering the rescue and recovery operations. He had apparently just disembarked from another aircraft and was standing on the highway near Sanarate.

The rescue plane was bringing food and medicine to the quake victims. It was trying to land on the highway when it got caught in strong crosswinds.

Amazingly, no one was seriously injured. The two men on the left of the photograph leapt from the pick-up truck just before the crash, adding an undeniable personal aspect to this unbelieveable photograph of the aircraft impacting the truck.

The spectacular photograph was featured in the June 1976 issue of National Geographic which was dedicated to the earthquake. This year Natijonal Geographic editors featured it as one of their 50 Greatest Pictures in a special in National Geographic magazine. It also won second prize in the “Spot News” category for 1976, which makes one wonder what the first prize photograph could possibly have shown.

Bob Madden has a great photography blog with tips and tricks as well as the opportunity to join him on a photo safari or photography workshop. In a post about patience, he has a published a number of his best photographs where he cites the amount of time it took him to get the photograph. Most of them are quite long: 15 days, five months, four hours. Underneath the photograph of the plane crash, however, it simply says Two seconds!.

It’s a brilliant example of how skill and instinct can make all the difference when you are in the right place at the right time.

I wasn’t able to find anything out about the plane or the pilot, although I did discover that you can buy a greeting card of the photograph. I have to admit, I’m not sure what the appropriate occasion might be.

05 December 2014

A Fun Set of Videos for the Weekend

These are all good-hearted aviation videos which are being passed around that I thought you might enjoy. Surely you can’t have already seen them all!

Note: if you are reading this in your inbox, you’ll need to click through to the post in order to see all the embedded videos.

If you aren’t reading this in your inbox, why not sign up now! You’ll get the posts emailed to you each Friday (and nothing else, no spam).

This viral video shows real community spirit, when an aircraft full of passengers got out into weather of -50C to push their aircraft onto position on the runway:

One of the passengers puts it simply: “We all want to get home.”


This is closer to power lines than I ever want to be in a flying machine:

They are fixing damaged wires and cables on live high voltage power lines. I was holding my breath while I watched.


I have seriously always wanted a jetpack:

In my imagination they would be a bit more portable and less like a strapped on car, though.


This video is a bit older but still quite frightening to watch from the 6 minute mark onwards:

Spoiler: the Cap-21 at College Park Airshow was able to land safely despite the lack of a propellor.


I found this documentary about the Hawker Hunter is fascinating:

The Hawker Hunter is a subsonic British jet aircraft developed in the 1950s. The single-seat Hunter entered service as a manoeuvrable fighter aircraft, and later operated in fighter-bomber and reconnaissance roles in numerous conflicts.


An amazing video of atmospheric affects around aircraft:

Fantastic and surreal footage taken when the dew point and the air temperature line up to show trailing vortices and wing condensation.


I’m still amazed by the A350 formation flight in September. Airbus have now released a “making of” video about how they did it.

The attention to detail is very telling and it’s just wonderful to see those five aircraft flying together again. Full credit to Airbus for making this excellent display and allowing us a view behind the scenes.


And finally, this documentary follows the final flight of a Qantas Boeing 767-300ER as it goes to Victorville* airplane graveyard, “where planes go to die.”

I have to admit, I felt a bit teary eyed for the poor little Boeing.


I hope you enjoyed those. See you next week!

* Little known fact: when I was 16, an earnest young gentleman asked me to run away to Victorville with him to get married and live happily ever after. If I’d known about the airplane graveyard back then, I might have been tempted!

28 November 2014

Overloaded, Overspeed and Out of Fuel

The situation started quietly: a Boeing 757 inbound to Newcastle International Airport (NCL) was asked to do a go around: break off the approach and try again.

The Thomas Cook aircraft was a Boeing 757-237 registration G-TCBC. There were seven crew on board and 235 passengers. The crew was scheduled for an early morning flight from Newcastle to the Canary Islands, landing at Fuerteventura and returning to Newcastle that afternoon. They could expect to be home for suppertime.

The Commander was 56 years old and held his ATPL with 13,374 flying hours (1,380 on type). He’d spent two and a half years flying the Boeing 757 before the incident. Prior to that, he’d flown Airbus aircraft for over thirteen years. He said he’d reached a stage where he felt comfortable with the B757. His First Officer had been rated on the Boeing 757 for over five years.

They reported for duty that morning at 0500 hours. The Captain said they were as well-rested as could be expected for that time of the morning. His mindset about his job was less than positive.

He sensed that the airline was in turmoil due to a major internal re-organisation programme. The direct effect for him was that he had been told that he would be one of several captains who would be demoted to first officer in March 2014 and that his salary would reduce significantly. He was unhappy about this impending change and the matter weighed heavily on his mind at work, despite his best efforts to ignore it.

The day’s flights were uneventful until they were on final approach to Newcastle. The Captain was the Pilot Flying. The runway was wet and the Automatic Terminal Information Service included a pilot report of windshear at 500 feet which had caused his aircraft to lose 15 knots of airspeed.

The Boeing 757 was set up with the landing gear down and flap 20, preparing to land with flap 25 as per Standard Operating Procedure. After a slightly late turn onto the intercept heading, the aircraft overshot the centreline in the process of capturing the localiser heading. Air Traffic Control noticed the overshoot and gave a new intercept heading.

The Captain thought there was a technical fault and commented on this to his First Officer repeatedly over the next few minutes. After the incident, no evidence of a system fault was found. The investigation found that the Captain believed that he’d experienced more technical problems than was usual for the past few months.

The flight crew had clear sight of the runway and the aircraft landing ahead of them. Everything seemed good.

Then the aircraft in front reported a possible birdstrike on the runway. Air Traffic Control immediately called the Thomas Cook Boeing 757 and instructed the flight crew to go around.

The Captain responded by saying “Go around” three times. He applied maximum thrust and disconnected the autothrottle.

The First Officer hadn’t expected a go around when everything looked fine and simply wasn’t sure what was happening. He heard the Captain’s repetition of the go around but it was not a standard call. The Captain’s call should have specified a flap setting, which would serve as the First Officer’s first instruction. He wasn’t quite sure what to do.

Air Traffic Control instructed the aircraft to climb straight ahead to 3,500 feet above mean sea level. The standard missed approach procedure, which both pilots would have reviewed before the flight, was to climb to 2,500 feet.

The controller probably meant to simplify the go-around procedure for the crew but this instruction came in as the crew were trying to initiate the change in plans and under a high work load. As a result, it was just another distraction.

The go around was badly handled. The Captain did not press the G/A (go-around) switch which would have helped configure the aircraft for him; specifically, it would have cleared the localiser and glideslope data until they set the aircraft up for the new approach. The Captain also did not disconnect the autopilot as a part of his initial response. So now, the autopilot was still trying to track the localiser and glidescope for a landing which they’d already missed.

Takeoff/Go-around switch – Wikipedia

The go around setting is used when an approach is taking place. If a pilot finds that they are unable to land, activating this switch (pushing thrust levers to TOGA detent) will increase the power to go-around thrust. Most importantly, the TO/GA switch modifies the autopilot mode, so it does not follow the ILS glideslope any more and it overrides any autothrottle mode which would keep the aircraft in landing configuration. On Airbus aircraft it does not disengage the autopilot, but causes it to stop following the ILS and perform Go Around maneuver automatically. In an emergency situation, using a TO/GA switch is often the quickest way of increasing thrust to abort a landing. On Airbus planes pushing throttles to TOGA detent does all regarding flight path and speed.

However, instead of using the TOGA switch, he disconnected the autothrottle and applied maximum thrust. At full power, the aircraft accelerated and continued to descend.

The speed was 187 knots and still increasing when the Captain said “go around” again and finally disconnecting the autopilot. An unexpected go around is always stressful and now he had to fly the aircraft manually and force himself to disregard the commands coming from the flight director, which was still set up for the approach. He did not tell the First Officer of the configuration changes and didn’t say anything as he disconnected the autopilot.

The First Officer didn’t check the panel so he didn’t realise that the aircraft had not been set up for the go around. Standard operating procedures had broken down and he became confused. His job, as pilot monitoring, was to watch for discrepancies, especially speed. He was aware that the go-around call was incomplete and that he hadn’t modified the flap settings but instead of querying the situation, he responded to the Air Traffic Control call, confirming that they would climb to 3,500 feet, and then he input the height on the mode control panel.

The First Officer was selecting the new altitude when the master warning alert sounded. He cancelled the master warning. He didn’t spot that the autothrottle had been switched off, although at this point he noticed that the Captain had disconnected the autopilot. The First Officer looked at the Captain to make sure everything was all right, surprised that he was flying the go around manually.

The aircraft reached the Flap 20 speed just after the autopilot was disengaged as the aircraft pitched up. Although the gear was retracted, the Flap 20 setting remained for a further 30 seconds.

The Commander called for Vref+80 climb thrust. Vref is the speed for the aircraft which is the safe manoeuvre speed with flaps up. In this instance, Vref was 125 knots so plus 80 means that the Captain wanted to go 205 knots.

But the First Officer became flustered when he couldn’t set the speed.

Because the commander called for a target speed of VREF+80 and climb thrust, the co-pilot tried to select the relevant speed on the MCP. However, he was unable to open the speed window to do so. He recalled that before the departure from NCL, an engineer had said the previous commander had mentioned having difficulty in viewing one of the digits in the speed window, so the co-pilot wondered if there was a technical malfunction. Meanwhile, although he was aware that the speed was increasing rapidly, he was trying to retract the flaps and failed to monitor the speed adequately.

Although he’d flown the Boeing 757 for over five years, he had very little experience performing a go around and couldn’t remember having practised much in the simulator training. Now he’d become overloaded. He had too many tasks at the same time; the human response to this is to limit the amount of processing and over-focus (or fixate) on a single task. He lost all overview of the situation and of his role as pilot monitoring.

The limit for safe manoeuvring of the aircraft with flaps set to 20 is 195 knots. The aircraft had exceeded this by 18 knots before the flaps began to retract. The aircraft speed remained above the flap limit speeds up until the point when the flaps were fully retracted. The aircraft reached 287 knots before the thrust levers were set back to idle position from the go around.

That’s what is known as overspeed: the airspeed has exceeded a safe limitation. In this case, the safe speed for the extended flaps was exceeded, which can cause damage to the flap system. In the case of a flap overspeed, a full inspection must be made of the flap system before the aircraft can fly again.

The Captain was doing his best to climb and maintain 3,500 foot above mean sea level flying by hand. He later described his First Officer as “stunned” and said that he was not offering the support that he could have.

The Captain asked for the autopilot to be engaged but that proved problematic as well. They didn’t speak, but the flight recorder shows that the autopilot was repeatedly engaged and disengaged over the course of the next few minutes. This may have the result of movements on the control or that the Captain was inadvertently disengaging it using the pitch trim before realising it had engaged.

Meanwhile, as the go-around switch had never been set, the Flight Director modes for localiser and glideslope were still set. The only other way to clear this would have been to turn the flight director off and on again. So even if the flight crew managed to engage the autopilot, it would still be trying to track the localiser and glideslope for the active runway, now behind them.

They were in a mess.

They were lucky that although the aircraft was flying well above the safe limits for the flaps, the flaps retracted normally. As they retracted past flight 1, the leading edge slats began retracting. However, due to the speed, the leading edge slats failed to fully retract. They stopped, partially extended. A caution message appeared on the Engine-Indicating and Crew-Alerting System (EICAS) but neither flight crew member acknowledged the caution.

It took six minutes for the First Officer to set up the speed window and autothrottle and the autopilot so that the autopilot could remain engaged.

Meanwhile air traffic control gave the flight crew vectors to lead the aircraft downwind under radar control for another approach to Newcastle. The workload was such that the aircraft was flying almost 500 feet below their cleared altitude (3,500 feet) and neither pilot noticed.

The First Officer suggested that they enter a holding pattern. The Captain decided not to and instead said they should extend the downwind leg. The First Officer informed Air Traffic Control that they had a slight technical problem.

The Captain asked how much fuel was remaining and the First Officer told them that they had 3,600 kg.

The First Officer was right to ask for a holding pattern: the flight crew were racing behind the plane and a holding pattern would give them the chance to find out what was going on. Although the Captain later stated that his First Officer seemed flustered and not giving full support, he turned down this opportunity to get caught up. By extending the downwind, the Captain made them do a whole new set of calculations. This solution did not relieve any of the pressure on the crew.

The First Officer spoke to Newcastle control on the radio as he started the Leading Edge Slat Disagree check list. He followed the first four steps correctly but at step five he made a mistake. The checklist said that the alternate flaps selector should be set to agree with the flap lever. He should have set the selector to UP as the flaps had been retracted. Instead, he set the alternate flaps selector to flap 1.

Eventually the automatics were successfully engaged but the slats remained partially extended due to an exceedence of the limiting speed by a significant margin. The co-pilot began the relevant Quick Reference Handbook checklist but he was frustrated by his poor performance prior to that. Interruption caused him to lose his place in the checklist and instead of starting again, in accordance with SOPs, he struggled to find where he had got to. The similarity in presentation of steps 2 and 4 made this quite difficult. Step 5 required the alternate flaps selector to be positioned to agree with the flap lever. The flap lever was in the up position but the co-pilot set the alternate flaps selector to flap 1, possibly as a result of his heightened anxiety.

In step six, the leading edge flaps were set to alternate. The First Officer did this, which meant that the leading edge flaps ran to the commanded flap 1 position.

This cleared the Leading Edge Slat Disagree message… but now the Trailing Edge Flap Disagree message lit up.

The First Officer hadn’t completed his checklist but the Captain saw the new caution and told the First Officer that he should change to the Trailing Edge Flap Disagree checklist.

Step seven, the next step of the checklist, would probably have made it clear to the First Officer where it had all gone wrong but he never got that far.

He started the Trailing Edge Flap Disagree checklist. This time he made it to step three before being interrupted by a radio call from Newcastle Tower. The extended downwind meant that the aircraft had now left controlled airspace.

It would have been nice if Air Traffic Control had notified them of this before they’d made it that far, giving the flight crew a choice to stay in controlled airspace to retain the best traffic separation service. As it was, they continued.

Standard operation would be that the Pilot Flying deals with the radio while the Pilot Monitoring goes through the checklists but neither flight crew ever seemed to consider the division of duties.

The First Officer acknowledged the ATC call and went back to his checklist. The Captain interrupted him again, asking for more flap. He was increasingly convinced that they had a flap fault and wanted to confirm the problem. “Let’s go for flap 5,” he told the First Officer.

The First Officer stopped the checklist and tried to move the flaps with the flap lever. He was clearly disorientated as he selected both the flap lever and the alternate flaps selector to the flap 5 position. Nothing happened.

The Captain did not notice that the First Officer had mishandled the flaps but he did notice that the flaps were not moving. This was the confirmation he was waiting for: they had a flap fault and would have to do a flapless landing.

The First Officer never completed the checklist. Had he ever completed steps four and five, the flaps would have been controlled and referenced to the alternate flaps selector: that is, he would have been led to diagnose the actual fault which he had caused.

No other flap/slat issues were recorded for the remainder of the flight and the landing was made using flap 30. Other than the conditions associated with excessive speed and partial slat extension, the flap and slat parameters reacted as expected for the given crew selections.

The Captain needed to decide what to do.

He explained later that he had a landing distance of 1,600 metres in his head for a flapless landing, and that the week before, he’d seen an aircraft landing at Newcastle with flap 20 and it had appeared to use much more than this. He knew that the Newcastle runway didn’t have a stopway for overruns. He didn’t like the idea of a flapless landing on that runway, which was wet and had reported windshear earlier.

The flight’s alternative airfield was Edinburgh but he knew the runway there was not much longer than Newcastle’s.

“That’s all the flap we have got,” said the Captain. “We need a longer runway, don’t we.”

The First Officer knew where the closest longer runway was. “Yeah, we need Manchester, don’t we?”

It seemed obvious to both of them: so obvious that neither checked the Calculation of Operational Landing Distance which would have told them that the runway at Newcastle was plenty long enough for a flapless landing. There was no discussion of the decision, let alone a review.

They needed 2,000 kg of fuel to fly to Manchester, which meant using the final reserve fuel. The Captain decided that they must divert immediately.

The First Officer agreed and informed Newcastle that they could not get the flaps down and that they were diverting to Manchester.

Fuel Emergency (EU-OPS 1.375 b)

The Commander shall declare an emergency when the calculated usable fuel on landing, at the nearest adequate aerodrome where a safe landing can be performed, is less than final reserve fuel.

The Captain had never dealt with a low fuel situation but he told investigators that he knew that he needed to make a MAYDAY call as soon as he was aware that they would need to use final reserve fuel. He could not explain why he did not do so.

Thomas Cook, the operator of the flight, did an internal investigation to try to understand how the situation has deteriorated from a simple go around at Newcastle. They came to the conclusion that the pilots felt more in control of the situation once they had made a decision, so although they knew it meant landing with less fuel than normal, they accepted this as a necessary part of the solution.

Meanwhile, Air Traffic Control instructed the flight to turn onto heading 230º and climb to FL100 and asked what cruising altitude they would like. The flight crew decided it was better to stop the climb at 10,000 feet. The First Officer selected Flap Up without going back to his unfinished checklist. He forgot about the alternate flap selector which he’d set to flap 5, so the flaps remained partially extended. Neither pilot ever thought to check the pressure settings.

They proceeded with the flight.

The forward fuel pump low pressure light illuminated on the fuel panel. The First Officer commented on this but no action was taken. Meanwhile, the Captain called in the cabin manager for a briefing on the flaps situation and to explain that they were diverting to Manchester.

Air Traffic Control cleared the flight direct to Pole Hill VOR.

The flight crew levelled off at what they thought was FL100, 10,000 feet above sea level. However, they hadn’t changed the pressure settings and so the pressure was still set up for Newcastle. When the aircraft levelled off, it was 420 feet above the cleared level.

Now the First Officer found that he could not program the new route into Route 1 in the flight management computer. The Captain used raw data to navigate towards the Pole Hill reporting point.

The commander used the heading select to navigate by hand towards the Pole Hill reporting point. Clearly frustrated with all the technical difficulties they were experiencing, he decided that they needed to declare a MAYDAY.

They should have done this as soon as they knew that the aircraft was going to land with less than final reserve; that is, when they diverted for Manchester.

The First Officer told Air Traffic Control but didn’t use the standard phrasing. Instead, he almost conversationally added “and we want to declare a mayday” at the end of a call.

The controller acknowledged this with “Roger” and then followed up. “Have you got any more details for the paramedic?” He had clearly presumed that there was a passenger issue on board as he had no information to lead him to believe that the flight was in difficulties.

The First Officer explained that they didn’t need a paramedic but that they would be making a flapless landing at Manchester. He did not mention the fuel situation. His attention was split between the flight management computer and the radio calls. As a result, his performance was extremely poor.

He had lost confidence in his own ability and he had probably reached an over-aroused mental state, where his capacity to think straight had started to deteriorate. Like the commander, he was now experiencing a low fuel scenario for the first time. At this point it is likely they were both task-saturated. This helps explain why the After Take-Off Checks were missed.

It’s likely that he couldn’t program the new waypoint in the flight management computer because he hadn’t activated Route 1. In any event, he eventually decided to enter the data into Route 2 which was then activated. The flight crew were finally receiving navigational assistance from the flight management computer for the first time since the initial go around.

That’s when the LOW FUEL caution light and the fuel configuration light turned on. The First Officer then told Air Traffic Control that they were requesting a priority landing due to a low fuel warning. Newcastle Air Traffic Control said they would pass the message on and asked if an emergency was being declared.

The First Officer confirmed this and he was asked to squawk 7700, which is the code for a general emergency. This means that for every controller in the area who could see the flight on secondary radar, it was clear that the flight crew had declared MAYDAY.

At no point did the crew discuss the fuel situation. They didn’t appear to take into account the extra miles they were covering in their approach from east of Newcastle, nor the fact that they would use more fuel because of the non-standard flap configuration for the cruise. They’d decided to stay at 10,000 feet but their predicted fuel burn was based on cruising at 17,000 feet.

The First Officer tried again with the flaps and this time after various selections, he found that the flaps appeared to be working normally. He’d managed to turn off the alternate flap lever, which cleared the disagree indications. He retracted the flaps to conserve fuel and concluded that the flaps were finally back under normal control (although they had been all along).

The Quick Reference Handbook specifically warns against troubleshooting by deviating from non-normal procedures prior to the completion of appropriate checklists. The crew ignored this and made random flap selections without referencing either checklist.

They managed to regain normal control of the flaps, but if they’d followed the Quick Reference Handbook in the first place, they wouldn’t have even had to consider a flapless landing, let alone a diversion.

At any event, their flaps were now clearly working as expected. They’d had a low fuel indication for fifteen minutes and the Captain knew that Newcastle was still the nearest airport. He didn’t revisit the plan but continued to Manchester. He later told investigators that they’d already made the decision to divert and besides, he didn’t think the First Officer would consider a return to Newcastle.

…the commander felt there was little time available to conduct a joint review of the situation but that he did mentally review things himself. He also remarked that the situation had felt unreal and that it seemed to get out of control very easily. He recalled that on a couple of occasions he had tried to offer the co-pilot some reassurance.

The First Officer changed frequencies to Scottish Control and identified the aircraft. He did not mention the MAYDAY. There was no response, but neither of the flight crew seemed to notice. They had now realised that they’d never done the After Take-Off Checks after the Go Around at Newcastle and went through the checks, including resetting the pressure and descending to FL100.

After a further discussion about the flaps, the crew agreed that they should be able to land normally with Flap 30 but they would slow up early just in case.

They were unsure whether there’d been a flap overspeed or not and were perplexed as to why the automatic systems had not worked as expected.

Scottish Control did not realise the aircraft was on frequency until six minutes later, when the First Officer called again to request direct routing to Manchester.

The flight was given clearance for a direct 10-nautical-mile final into Runway 23R at Manchester. The Captain commented that they needed to do something about the fuel, over fifteen minutes after the low fuel caution for the right tank. This was the first reference in the cockpit to a fuel imbalance.

The First Officer didn’t respond, as at that moment Air Traffic Control gave them the weather at Manchester airport followed by the descent clearance.

After the call, the Captain asked for the fuel to be balanced. Investigators believe there was an imbalance of close to 800 kg by this time. The First Officer opened the fuel crossfeed and turned off the right fuel pumps without referring to the Low Fuel checklist. Neither seemed concerned about their fuel consumption.

It seems that as the flight crew had already accepted that they were landing in a low fuel situation, the warnings were treated as expected consequences of the solution. But if at least they’d referred to the Fuel Configuration checklist at that point, as per standard operating procedure, it would have referred the crew to the Low Fuel checklist and they might have paid more attention to the fuel levels in the right tank.

The aircraft started its descent. Ten nautical miles from touchdown, the fuel crossfeed was closed and the fuel pumps turned back on.

Following the Low Fuel checklist would have meant that the crossfeed was left open with all pumps on until landing. Instead, the crossfeed was only open for eleven minutes. As the thrust was at minimum for most of those eleven minutes, there was not enough time to balance the tank levels.

By this time, the Captain had realised that their fuel levels were critical. “We’re committed to land now, we have to land,” he said, and then later, “We don’t want to go around. We can’t.”

The First Officer acknowledged the situation. Normally, the crew would have discussed the Flight Crew Training Manual notes regarding an approach and landing with a low fuel warning. At the very least, they should have discussed the possibility of a further go around, rather than just dismissing the possibility.

Manchester Air Traffic Control should have been told that their fuel situation was critical. Nothing was said after the initial request for direct routing due to low fuel.

From the Thomas Cook internal investigation into the situation:

An important point here is that both crew felt so much better about the situation after the decision was made, it made them reluctant to question it further (if unconsciously). The choice to go to Manchester ‘felt’ very good and this affect probably duped the crew into a false sense that the choice was better than it was in reality, and stopped them reviewing or scrutinising it.

It is probable that the criticality of the fuel situation was never properly realised for a number of reasons; partly due to being consumed with a reflection on earlier mistakes, partly due to a reticence to discuss further problems during the flight (and therefore a tacit reassurance from each other), and partly due to unfamiliarity around diverting and what to expect. However the main reason is probably that the crew viewed the fuel state as being planned as part of the decision to divert…….Because below-minimum fuel was part of that ‘very good’ decision, and the fuel state progressed ‘as planned’ in line with that ‘very good’ decision, the actual criticality of the fuel situation did not make the impact upon the crew that it might have done. This even applied to the EICAS message and failure to run the low fuel QRH.

There’s a happy ending to this one. At 16:49, the aircraft landed safely on flap 30 and taxied to the stand.

There were only 200 kilograms of fuel in the right tank. With the crossfeed valves closed, the right engine was dangerously close to flaming out and certainly would have if they’d been asked to go around.

The day was over for the flight crew. The Captain made a note in the technical log that they were unable to select a speed in the speed window after the go around. He also noted that the LE Slat Asymmetry and Flaps Disagree warnings had been displayed. He did not isolate the cockpit voice recorder or preserve the flight data recorder data although he later stated that he was aware that it was a serious incident. He didn’t debrief the First Officer or review the situation with the crew before dispersing. He didn’t fill in his report immediately as he was in the habit of leaving them for a couple of days. He did attempt to contact the Duty Flight Operations Manager but failed.

On the way home, he realised that he hadn’t told the engineers about the possibility of a flap overspeed event. He phoned in and it was added to the technical log.

The engineers analysed the flight data and discovered that the flap 1 speed limit had been exceeded by 46 knots. Thomas Cook started an internal investigation as the details began to come clear. The day after that, they reported the flight to the AAIB who began their own investigation immediately.

The internal investigation included the following report from the Captain:

He remembered that he called “go around”, but did not state “flaps 20” and that he advanced the thrust levers. He knew that he needed to do something with his thumb, but instead of pressing the Go Around switch, he said he must have disconnected the autothrottle.

The AAIB computed the minimum landing distance for the 757 as 1,455 metres for a flapless landing. If you add a safety margin of 15% in case of technical emergency, that’s a total landing distance required of 1,685 metres. Newcastle’s runway is 2,125 metres.

What should have been a straight-forward go around at Newcastle Airport went very wrong as a dozen small issues cascaded into an avalanche. The niggling feeling that he needed to do something with his thumb led him to disconnect the autothrottle rather than hit the Go Around switch, meaning that he had to advance the thrust levers manually. Because the G/A switch wasn’t selected, the autopilot had to be disconnected in order for the aircraft to climb. And so it went on: a simple mistake in the correct sequence of pressing buttons came damn close to risking fuel exhaustion in the right engine.

Thomas Cook have adjusted their training for go arounds to include the advice that the flight crew need to take their time and discuss their intended actions, and if necessary to re-engage the autopilot first. Obviously it needed to be said.

This incident is especially interesting because unlike many recent go-around incidents, this was not a case of the pilots being unable to hand-fly the plane. On the contrary, the Captain was clearly able to go around and return into the circuit under manual control, despite the Flight Director working against him. He then continued to hand-fly and navigate the Boeing 757 to the first waypoint en route to Manchester. In this case, the combined lack of knowledge of the flight crew regarding the automatic systems in the aircraft and an inexplicable lack of adherence to checklists caused them to get into such a muddle that they became totally unable to fly the plane safely.


For more like this, pick up the first book in my series, Why Planes Crash. Why Planes Crash: Casenotes 2001 covers eleven incidents and accidents in detail from all over the world in 2001.

21 November 2014

The Story of Diamond Jack Palmer and the Pelikaan

The story of Diamond Jack Palmer is a typically Australian story of a beach comber whose luck was in when he found diamonds worth a few million on the beach but couldn’t quite keep up with his luck.

It’s also a fascinating aviation story.

It starts with the Koninklijke Nederlandsch-Indische Luchtvaart Maatschappij airline and their Dutch Dakota DC-3 registration PK-AFV, known as Pelikaan.

KNILM logofrom the personal collection of Jorge González

KNILM (the Royal Dutch Indies Airways) was founded in 1928 and headquartered in Amsterdam. They initially offered services from Batavia (now Jakarta) to Bandung and Semarang. The airline rapidly expanded and, in 1930, they offered their first international flight connecting to Singapore. In 1938 they started operations in Sydney, Australia.

When the Japanese invaded the Dutch East Indies (now Indonesia), the airline evacuated all the aircraft it could to Australia.

Ivan Vasilyevich Smirnov was a Russian WWI flying ace who returned to military flying as a captain in the army aviation corps in Indonesia after the attack at Pearl Harbor. He was asked to evacuate the Pelikaan with two crew and nine passengers fleeing Java. They left just in time: the Japanese took the Bandung area three days later.

In the early hours of the morning, shortly before take-off, the Bandung airport manager handed Captain Smirnov a cigar-box shaped packaged wrapped in brown paper. Smirnov was told to hand the package to a representative of the Commonwealth Bank once he reached Australia.

The package contained diamonds which were later said to be valued somewhere between 3 million and 10 million pounds sterling in today’s money (4 million to 17 million US dollars). Ivan Smirnov claimed that he was did not know what was in the package. He and his fleeing passengers departed Bandung normally.

As the aircraft skirted the Kimberley coast of Western Australia, about 80 kilometres from its destination, Smirnov saw smoke over the town of Broome, which was under attack by nine Japanese Zeros. Japanese fighter ace Lt Zenjiro Miyano spotted the Dakota and led three Zeros to attack.

Mitsubishi A6M3 Zero (Commemorative Air Force / American Airpower Heritage Flying Museum)

The Zeros attacked the defenseless Dakota, firing at its port side. The port engine caught fire. Smirnov was badly wounded but managed to put the aircraft into a deep spiral dive.

His only option was to crash land on the beach. The right tyre exploded forcing the aircraft to veer to the right and into the water, which extinguished the fire in the port engine. The Dakota sank into the sand and swung into the surf which was at high tide.

The Zeros dived to strafe the Dakota again and they scrambled out of the plane to find protection on the beach. Four passengers were killed by the Zeros. Smirnov was badly wounded and sent one of the uninjured passengers to the aircraft to recover the cargo. The passenger picked up the post, the log book and the brown paper wrapped package but then he was hit by a wave and dropped the goods. He recovered the log book and the post but could not find the package.

The following day, while the survivors were waiting for a rescue party, a Japanese Kawanishi H6K dropped four bombs but did not cause any further damage.

Five days later, the survivors were rescued. The representative from the Commonwealth Bank came specifically for the package and Captain Smirnov had to tell him it was lost. The story of the diamonds spread like wildfire, although Smirnov said he never knew what was in the package, only that it was valuable.

It didn’t take long for local man Jack Palmer head to the wreckage to salvage what he could. He and “two Aborigines” collected what they could find. Apparently, he found the cigar box and tipped the largest diamonds into “aluminum cups” which he hid and wrapped the rest in a rag. He showed them to Frank Robinson and James Mulgrue, who were waiting nearby on a motorboat. He’s said to have told them, “Take a handful for each of yourself and don’t tell anyone.”

Investigating party standing in front of crashed Netherlands East Indies KLM Dakota DC-3 passenger transport PK-AFV ‘Pelikaan’ at Carnot Bay, Lieutenant Laurie O’Neil (second from left), ‘Diamond’ Jack Palmer (third from left) and Warrant Officer Gus Clinch (fourth from left), Western Australia, March 1942

What’s definitely known is that the three of them were at the aircraft wreck and that afterwards, Palmer was seen around town spending money and bragging that he no longer had to work, only to sit and smoke cigars. He later handed over two salt-cellars of diamonds to the authorities.

From the Advocate, an Australian newspaper, in a short piece published 4th May 1942:

BROOME, Sunday.-The discovery by a beach comber of £300,000 worth of diamonds on a remote north-western beach has been revealed.
Addressed to the Commonwealth Bank, the diamonds were handed in a parcel to Captain Smernof, Dutch pilot of one of the last planes to leave Java after its capture by the Japanese.

The plane was shot down by Japanese raiders returning from their first raid on Broome early in March, and crashed into four feet of water in Carnot Bay, 60 miles north of Broome. Of the complement of 12, four died of injuries and were buried in the sand hills near the lonely beach. The others were discovered by natives and rescued, but when a search of the plane was made the diamonds could not be found. Later officials made another search, but without success, and the Dutch authorities then despatched a special officer to investigate.

Two days later, Jack Palmer, middle-aged and ill clad, arrived on his way to enlist. He said he had given up his occupation of beach comber, and had abandoned his lugger. Then, producing a pair of large salt and pepper shakers, he poured out on an official’s desk a glittering stream of diamonds. He had found them in a sodden parcel partly embedded in tidal mud near the beach of Carnot Bay. The diamonds are now safe in the Perth Commonwealth Bank.

Palmer was immediately taken into custody for interrogation. He claimed that was all he had and that the package had broken apart with most of the diamonds falling into the sea.

More diamonds showed up in the area, presumably stashed or spent by Palmer, but the total amount recovered was just over 10% of the original shipment.

“Diamond Jack Palmer” and the two men who met him on the motorboat were tried for the theft of the diamonds in 1943. The two accomplices were acquitted as it was determined that no theft had been committed by them. Palmer had handed over two salt-cellars of diamonds to the authorities and although the majority of the diamonds were still missing, the investigation was unable to prove that he had stolen the rest.

The remains of the Dakota remained on the beach until 1970, when the stripped fuselage was broken up by dynamite. The leading edge of one of the wings is apparently all that remains now.

In an interesting addendum, in 1989 a veteran named Norman Keys wrote about his recollections of the crash near Broome.

About the Broome 1942 exhibition

Excerpt from a letter written by Norman Keys dated 29 September 1989. Australian War Memorial PR90/030

After a few days on the beach when the woman and her child and some of the crew were buried, one of the survivors when searching for water was found by one of the local natives who took the rest of the survivors to a dutch [sic] mission station about fifty miles from the beach the plane had landed on. The message got through to Broome 300 miles south and that’s where I entered the story with a trip in a utility to pick them up.

When I arrived at the Beagle Bay Mission the four survivors were in a pretty bad way and the Captain Smirnoff appeared to me to be delirious and kept repeating that he had to get back to the aircraft to pick up the diamonds. For a brief period we considered going back to the aircraft with some native guides but it was decided that we had to get the survivors to hospital in Broome as soon as possible and so began the worst 300 miles trip of my life with my passengers cursing every bump. I never really believed the existence of the diamonds until some time later it was reported in the paper that a beachcomber had come across the plane and found some diamonds and was handing them out to the natives as favours and later in Broome was freely displaying them. It turned out that there was a fortune in Dutch diamonds being evacuated from Java to the bank in Melbourne. There were court cases following the discovery of the diamonds but the bulk of the shipment has never been discovered and the belief is that they are still buried somewhere in N.W. Australia.

The interesting thing is that this is the first reference that Captain Smirnov may have known about his cargo of diamonds. After the crash, he had consistently stated that he never knew what was in the package, only that he needed to deliver it. Based on Norman Keys’ account, he may have known exactly what he was carrying but unable to do anything about it.

The remaining diamonds were never recovered.

12 November 2014

Crash on Go-Around: Russian Video

This video is harrowing to watch but it’s the most classic example of a stall in the circuit I think I’ve ever seen. The dash cam on this microlight is recording a go-around and crash at a small airfield near Moscow. It was featured in Life News at which point the video began to go viral. The original article is here: Авиакатастрофа под Владимиром попала на запись видеорегистратора – Первый по срочным новостям.

The aircraft was an Evektor Harmony, a light sports aircraft which weighs just 311 kilos empty (686 pounds). The aircraft’s stall speed at VS1 is 45 knots and at VS0 with full flaps it is 40 knots. It’s unclear in the video what the configuration of the aircraft is.

In the left seat is a student pilot and in the right seat is his instructor, who died in the crash. The Life News article refers to the instructor as the pilot but I suspect this is based on being in charge rather than a reference to who was Pilot Flying. It certainly does not look like there was ever a clear decision as to who was in control of the aircraft. There is no official information on the accident yet.

The video begins with what looks like a standard touch and go with some crosswind. The student pilot on the left has the stick, the instructor has the power. It seems to me like the student is looking at the instructor for reassurance and the instructor pulls back on the power, possibly because he couldn’t see how close to the trees they were? The student pulls back instinctively, pulling them right into a stall. Then there’s that awful slip to the left and its all over.

If you were shouting RIGHT RUDDER at the screen while watching this video, you are not alone, as you can see from the commentary on /r/flying on Reddit:

Apparently, photographs from the wreckage show that the flaps were down which might explain why they were climbing away so slowly.

It’s hard to understand what exactly happened or how they managed to do so much wrong on what should have been a simple missed approach.

An investigation is in progress.