Last week, the Final Report covering the accident of Fairchild SA 227-BC Metro III EC-ITP at Cork Airport was released by the Air Accident Investigation Unit in Ireland.

In order to completely understand all the factors that come into play in this 244-page report, I am going to split my analysis into two parts. Today, we’ll look at the specifics on the day of the crash. Next Friday, I will focus on the organisational factors which directly led to this fatal incident.

Over the night of the 9th/10th of February, the aircraft served as a night cargo charter for UK Royal Mail from Belfast to Edinburgh to Inverness.

On the 10th of February at 05:10, the aircraft was repositioned back to Belfast, ready for the scheduled flights of the day.

06:15 The accident flight crew commences duty.

They downloaded flight documentation and meteorological information for Belfast City, Cork and Dublin.

Cork had been operating under Low Visibility Procedures since 15:50 on the 8th of February, two days prior.

06:40 The aircraft, EC-ITP, departs Belfast to reposition at Belfast City.

07:15 EC-ITP arrives Belfast City, leaving the flight crew with a 35 minute turnaround.

The scheduled flight was Belfast City to Cork and back to Belfast City. Waterford Airport was specified as the alternate airport for Cork. No second alternate was nominated.

They fuelled with enough total quantity for the planned round trip to Cork and back to Belfast City with required reserves.

Boarding of passengers was delayed due to the flight crew working on the passenger seats in the cabin.

07:50 The doors closed with all ten passengers on board.

No cabin crew was on the flight, nor was one required, as there was only a limited number of passengers.

The First Officer gave the safety briefing and the flight crew prepared for departure.

08:10 The aircraft is reported as airborne and climbing to Flight Level 120.

08:34 Flight crew establishes communications with Shannon Air Traffic Control.

08:48 Communications handover to Cork Approach Control.

At that time, the Cork Automated Terminal Information Service (ATIS), which offers the latest actual meteorological conditions, broadcast that Runway 35 was active and Low Visibility Procedures (LVP) were in operation.

Cork Approach also informed the flight crew that Runway 35 was active but the visual range at Cork at that time were below the required minima for CAT I operations. They informed them that a CAT II approach was available for Runway 17.

A Category II instrument landing system is used in low-visibility conditions.

08:58 Aircraft establishes on the ILS approach to Runway 17 and contacts Cork Tower.

09:00 Cork Tower relay the Instrument Runway Visual Range, which is below the required visibility of 550 metres for the CAT II approach.

The decision height (or decision altitude) on a precision approach is the point where, if you do not have visual contact with the runway, you must discontinue your approach and climb (a missed approach).

It is the job of the Pilot Not Flying to monitor the approach and act as look out. He’s expected to call attention to deviations from procedure and watch for the decision height. It is his job to call when the approach lights or runway is clearly in sight. The decision height at Cork for the ILS approach to Runway 17 is 200 feet.

In this flight, the First Officer was the Pilot Flying and the Captain was the Pilot Not Flying.

09:03 The First Officer carries out a missed approach. The lowest height recorded by the Terrain Awareness Warning System on the aircraft was 101 feet.

Cork Approach offered radar vectors and the flight crew requested an approach to Runway 35, hoping that, with the sun behind the aircraft, they might be able to make visual contact with the runway.

09:10 The flight crew speaks to Cork Tower, reporting that they are eight nautical miles from the runway. Cork Tower informs the aircrew of the Instrument Runway Visual Range, which is again below the required minima for the approach. The aircraft continues with the approach.

09:14 The First Officer carries out a missed approach.

The lowest height recorded on this approach was 91 feet.

09:15 The flight crew request to enter a holding pattern for “fifteen to twenty minutes” to see if the weather conditions approve.

They maintained the holding pattern at 3,000 feet and requested weather for Waterford Airport, their alternate airport. Waterford was also below the required minima for an approach, so the flight crew requested weather information on Shannon. Conditions there were also below the required minima and Cork Approach offered to get weather for Kerry Airport. Kerry Airport conditions were good, with visibility in excess of 10 kilometres.

09:33 The aircraft is still in the hold when the Instrument Runway Visual Range at Cork shows a slight improvement.

Cork Approach (to a different aircraft): Surface wind zero nine zero degrees seven knots, ah…visiblity three hundred metres in fog, broken at one hundred, IRVR runway one seven now is four hundred metres all round.

Captain: See, it’s improving a little bit now, it’s four hundred.

The required minima is 550 metres.

The flight crew discuss their alternates and agree to hold a bit longer and see if visibility at Cork improves.

First Officer: Kerry’s alright.
Captain: It’s alright okay, so… In case we’ll proceed in the beginning there.
[sound of a bag being zipped or unzipped]
Captain: I always bring with me—brought with me—some notes about the alternative and all this kind of things and I never use it and now I don’t have it here.
First Officer: Is that the thing that’s pinned up on the board in the office?
Captain: Yeah, exactly.

09:39 The conditions improve again slightly and the flight crew decide to attempt a third approach into Cork, although the conditions are still below the required minima.

The Captain briefed the go-around procedure and that although he will be the Pilot Not Flying, he will apply power.

The First Officer by this time has done the flight, two missed approaches in bad visibility and a fifteen minute hold in an aircraft with no autopilot and no flight director. He must be beginning to feel the strain.

Captain: ….Okay go-around in case I apply power, flap one quarter. Okay, go-around flap positive rate gear up, okay, four hundred feet we clean the plane and that’s it.

09:45:22 Flight crew reports established on ILS Runway 17.

09:45:26 Cork Approach reports that the Instrument Runway Visual Range has improved to 550 metres, the required minimum.

09:46:00 Flight crew report to the Tower passing 9NM from the DME, that is, they are nine nautical miles from the runway.

Tower: Flightavia four hundred Charlie, good morning to you again. You are cleared to land runway one seven; the wind is zero nine zero degrees niner knots.
Commander: Cleared to land one seven, Flightavia four hundred Charlie.

09:46:15 The final Instrument Runway Visual Ranges reported by Cork Tower were now below below the required minima of 550.

Tower: Touchdown RVRs five hundred midpoint four hundred stop end four hundred.
Captain: Copied, thank you very much.
First Officer: It’s gone down, woah. I want the other guy’s RVRs, they were better.
Captain: Yeah, fifty feet less.

The RVR is measured in metres not feet, and the RVR was actually fifty metres less, not feet.

As per the briefing, the Captain operated the power levers during the latter part of the approach. This is important because the First Officer, who is the Pilot Flying, is now potentially missing input as to what is happening with the power.

The Captain, as Pilot Not Flying, is also counting down to the minimum descent height of two hundred feet, at which point they must either have the runway in sight or break off the approach.

Here’s what the Pilot Not Flying actually said.

“Okay minimum. Continue.”

Captain: Okay, capture again very good….sorry it’s eh, six hundred for minimum.
First Officer: Thank you.
Captain: Okay, five hundred for minimum. Three hundred for minimum. Watch out, glideslope. Two hundred for minimum. Localiser…yeah. One hundred for minimum.
Terrain Awareness Warning System: FIVE HUNDRED
Captain: Okay….[unintelligible]
Terrain Awareness Warning System: FOUR HUNDRED
Terrain Awareness Warning System: THREE HUNDRED
Terrain Awareness Warning System: MINIMUMS, MINIMUMS
Captain: Okay minimum. Continue.
Terrain Awareness Warning System: TWO HUNDRED
First Officer Okay

They once again descended below the decision height of 200 feet above the ground. However this time, the aircraft reduced power and at the same time experienced a roll to the left.

Terrain Awareness Warning System: ONE HUNDRED
Captain: Go around!
First Officer: Round.
Terrain Awareness Warning System: FIFTY
Terrain Awareness Warning System: FORTY

The Captain applied go-around power which is when they lost control of the aircraft. The aircraft rolled rapidly to the right and the right wingtip contacted the runway surface. The aircraft continued to roll.

One of the surviving passengers was able to describe the moment of impact.

“I do remember looking out and the ground was just feet from below us and it was grass, it was definitely not tarmac. And the pilot then gave the plane thrust, to come up out of the cloud. And at that stage, the cloud was right to the ground. I feel that the plane … immediately after the thrust, veered to the right and tilted…the right hand of the wing caught the ground first and after that it was just mayhem… I couldn’t breathe because all the mud had come up into the fuselage… I do remember pushing the mud away and then being able to breathe…”

09:50:34 The aircraft, inverted, impacts the runway. The recording ends.

09:56 The Instrument Runway Visual Range improved to 650/550/550 on Runway 17. By 10:08, 18 minutes after the accident, the visibility exceeded 2,000 metres.

The two flight crew and four passengers suffered fatal injuries. Four other passengers suffered serious injuries and the two remaining passengers had only minor injuries.

The final report gives the following primary cause:

  • The crew did not give adequate consideration to the weather conditions in Cork.
  • The crew breached the minimum decision height (DH) during all three approaches.
  • The captain applied reverse thrust which caused the aircraft to roll to the left due to the No.1 engine retarding to -9% torque, the No.2 engine stayed at 0% (idle). The power difference was due to a differential in power in the right engine, which was not corrected in maintenance checks. The AAIU believes the co-pilot applied right control inputs to counteract this, subsequently the application of full power to commence the go-around at 100ft coincided with the commencement of a rapid roll to the right and loss of control resulting in the subsequent accident.

How did this happen? Next week, we’ll look at the human factors in play here and untangle the complex relationships between the companies which led to the lack of regulatory oversight specified as a direct contributing factor.